Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumel Structured version   Visualization version   GIF version

Theorem esumel 30083
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
esumel.1 𝑘𝜑
esumel.2 𝑘𝐴
esumel.3 (𝜑𝐴𝑉)
esumel.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumel (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esumel.3 . . . 4 (𝜑𝐴𝑉)
2 esumel.1 . . . . 5 𝑘𝜑
3 esumel.4 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
43ex 450 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
52, 4ralrimi 2954 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
6 esumel.2 . . . . 5 𝑘𝐴
76esumcl 30066 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
81, 5, 7syl2anc 692 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
9 snidg 4197 . . 3 *𝑘𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
108, 9syl 17 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
11 eqid 2620 . . 3 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
12 nfcv 2762 . . . 4 𝑘(0[,]+∞)
13 eqid 2620 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
142, 6, 12, 3, 13fmptdF 29429 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
15 inss1 3825 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
16 simpr 477 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1715, 16sseldi 3593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4161 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
19 nfcv 2762 . . . . . . . 8 𝑘𝑥
206, 19resmptf 5439 . . . . . . 7 (𝑥𝐴 → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2118, 20syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2221eqcomd 2626 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵) = ((𝑘𝐴𝐵) ↾ 𝑥))
2322oveq2d 6651 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)))
242, 6, 1, 3, 23esumval 30082 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))), ℝ*, < ))
2511, 1, 14, 24xrge0tsmsd 29759 . 2 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {Σ*𝑘𝐴𝐵})
2610, 25eleqtrrd 2702 1 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wnf 1706  wcel 1988  wnfc 2749  wral 2909  cin 3566  wss 3567  𝒫 cpw 4149  {csn 4168  cmpt 4720  cres 5106  (class class class)co 6635  Fincfn 7940  0cc0 9921  +∞cpnf 10056  [,]cicc 12163  s cress 15839   Σg cgsu 16082  *𝑠cxrs 16141   tsums ctsu 21910  Σ*cesum 30063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-xadd 11932  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-hash 13101  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-tset 15941  df-ple 15942  df-ds 15945  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-ordt 16142  df-xrs 16143  df-mre 16227  df-mrc 16228  df-acs 16230  df-ps 17181  df-tsr 17182  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-cntz 17731  df-cmn 18176  df-fbas 19724  df-fg 19725  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-ntr 20805  df-nei 20883  df-cn 21012  df-haus 21100  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-tsms 21911  df-esum 30064
This theorem is referenced by:  esumsplit  30089  esumadd  30093  esumaddf  30097  esumcocn  30116
  Copyright terms: Public domain W3C validator