Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpad2 Structured version   Visualization version   GIF version

 Description: Remove zeroes from an extended sum. (Contributed by Thierry Arnoux, 5-Jun-2020.)
Hypotheses
Ref Expression
esumpad.3 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumpad.4 ((𝜑𝑘𝐵) → 𝐶 = 0)
Assertion
Ref Expression
esumpad2 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉   𝜑,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝑊(𝑘)

StepHypRef Expression
1 nfv 1840 . . . 4 𝑘𝜑
2 esumpad.1 . . . 4 (𝜑𝐴𝑉)
3 esumpad.3 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
4 difssd 3716 . . . 4 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
51, 2, 3, 4esummono 29894 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶)
6 esumpad.2 . . . . . 6 (𝜑𝐵𝑊)
7 unexg 6912 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
82, 6, 7syl2anc 692 . . . . 5 (𝜑 → (𝐴𝐵) ∈ V)
9 elun 3731 . . . . . 6 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
10 esumpad.4 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝐶 = 0)
11 0e0iccpnf 12225 . . . . . . . 8 0 ∈ (0[,]+∞)
1210, 11syl6eqel 2706 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
133, 12jaodan 825 . . . . . 6 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
149, 13sylan2b 492 . . . . 5 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
15 ssun1 3754 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
1615a1i 11 . . . . 5 (𝜑𝐴 ⊆ (𝐴𝐵))
171, 8, 14, 16esummono 29894 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
18 undif1 4015 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
19 esumeq1 29874 . . . . . 6 (((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵) → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2018, 19ax-mp 5 . . . . 5 Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶
21 difexg 4768 . . . . . . 7 (𝐴𝑉 → (𝐴𝐵) ∈ V)
222, 21syl 17 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ V)
234sselda 3583 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝑘𝐴)
2423, 3syldan 487 . . . . . 6 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
2522, 6, 24, 10esumpad 29895 . . . . 5 (𝜑 → Σ*𝑘 ∈ ((𝐴𝐵) ∪ 𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2620, 25syl5eqr 2669 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘 ∈ (𝐴𝐵)𝐶)
2717, 26breqtrd 4639 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)
285, 27jca 554 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶))
29 iccssxr 12198 . . . 4 (0[,]+∞) ⊆ ℝ*
3024ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
31 nfcv 2761 . . . . . 6 𝑘(𝐴𝐵)
3231esumcl 29870 . . . . 5 (((𝐴𝐵) ∈ V ∧ ∀𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3322, 30, 32syl2anc 692 . . . 4 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ (0[,]+∞))
3429, 33sseldi 3581 . . 3 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ*)
353ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (0[,]+∞))
36 nfcv 2761 . . . . . 6 𝑘𝐴
3736esumcl 29870 . . . . 5 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
382, 35, 37syl2anc 692 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ (0[,]+∞))
3929, 38sseldi 3581 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ℝ*)
40 xrletri3 11929 . . 3 ((Σ*𝑘 ∈ (𝐴𝐵)𝐶 ∈ ℝ* ∧ Σ*𝑘𝐴𝐶 ∈ ℝ*) → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4134, 39, 40syl2anc 692 . 2 (𝜑 → (Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶 ↔ (Σ*𝑘 ∈ (𝐴𝐵)𝐶 ≤ Σ*𝑘𝐴𝐶 ∧ Σ*𝑘𝐴𝐶 ≤ Σ*𝑘 ∈ (𝐴𝐵)𝐶)))
4228, 41mpbird 247 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  Vcvv 3186   ∖ cdif 3552   ∪ cun 3553   ⊆ wss 3555   class class class wbr 4613  (class class class)co 6604  0cc0 9880  +∞cpnf 10015  ℝ*cxr 10017   ≤ cle 10019  [,]cicc 12120  Σ*cesum 29867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-ordt 16082  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-ps 17121  df-tsr 17122  df-plusf 17162  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-abv 18738  df-lmod 18786  df-scaf 18787  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-tmd 21786  df-tgp 21787  df-tsms 21840  df-trg 21873  df-xms 22035  df-ms 22036  df-tms 22037  df-nm 22297  df-ngp 22298  df-nrg 22300  df-nlm 22301  df-ii 22588  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-esum 29868 This theorem is referenced by:  omsmeas  30163
 Copyright terms: Public domain W3C validator