Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpcvgval Structured version   Visualization version   GIF version

Theorem esumpcvgval 31339
Description: The value of the extended sum when the corresponding series sum is convergent. (Contributed by Thierry Arnoux, 31-Jul-2017.)
Hypotheses
Ref Expression
esumpcvgval.1 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
esumpcvgval.2 (𝑘 = 𝑙𝐴 = 𝐵)
esumpcvgval.3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
Assertion
Ref Expression
esumpcvgval (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Distinct variable groups:   𝑘,𝑙,𝑛   𝐴,𝑙,𝑛   𝐵,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑙)   𝐴(𝑘)   𝐵(𝑙)

Proof of Theorem esumpcvgval
Dummy variables 𝑠 𝑥 𝑦 𝑧 𝑏 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12537 . . . 4 < Or ℝ*
21a1i 11 . . 3 (𝜑 → < Or ℝ*)
3 nnuz 12284 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12016 . . . . 5 (𝜑 → 1 ∈ ℤ)
5 esumpcvgval.1 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
6 esumpcvgval.2 . . . . . . . . . . . 12 (𝑘 = 𝑙𝐴 = 𝐵)
7 eqcom 2830 . . . . . . . . . . . 12 (𝑘 = 𝑙𝑙 = 𝑘)
8 eqcom 2830 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
96, 7, 83imtr3i 293 . . . . . . . . . . 11 (𝑙 = 𝑘𝐵 = 𝐴)
109cbvmptv 5171 . . . . . . . . . 10 (𝑙 ∈ ℕ ↦ 𝐵) = (𝑘 ∈ ℕ ↦ 𝐴)
115, 10fmptd 6880 . . . . . . . . 9 (𝜑 → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
1211ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞))
13 elrege0 12845 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥)))
1413simplbi 500 . . . . . . . 8 (((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
1512, 14syl 17 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑥) ∈ ℝ)
163, 4, 15serfre 13402 . . . . . 6 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)):ℕ⟶ℝ)
1711adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑙 ∈ ℕ ↦ 𝐵):ℕ⟶(0[,)+∞))
18 simpr 487 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
1918peano2nnd 11657 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
2017, 19ffvelrnd 6854 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞))
21 elrege0 12845 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) ↔ (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ ∧ 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2221simprbi 499 . . . . . . . . 9 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2320, 22syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))
2416ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ ℝ)
2521simplbi 500 . . . . . . . . . 10 (((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ (0[,)+∞) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ∈ ℝ)
2724, 26addge01d 11230 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (0 ≤ ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)) ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1)))))
2823, 27mpbid 234 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
2918, 3eleqtrdi 2925 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
30 seqp1 13387 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3129, 30syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)) = ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) + ((𝑙 ∈ ℕ ↦ 𝐵)‘(𝑛 + 1))))
3228, 31breqtrrd 5096 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘(𝑛 + 1)))
33 simpr 487 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3410fvmpt2 6781 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ (0[,)+∞)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
3533, 5, 34syl2anc 586 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
36 rge0ssre 12847 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
3736, 5sseldi 3967 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
3816feqmptd 6735 . . . . . . . . . 10 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
39 simpll 765 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
40 elfznn 12939 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4140adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
4239, 41, 35syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4337recnd 10671 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
4439, 41, 43syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
4542, 29, 44fsumser 15089 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
4645eqcomd 2829 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
4746mpteq2dva 5163 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
4838, 47eqtr2d 2859 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) = seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
49 esumpcvgval.3 . . . . . . . . 9 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
5048, 49eqeltrrd 2916 . . . . . . . 8 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
513, 4, 35, 37, 50isumrecl 15122 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
52 1zzd 12016 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 1 ∈ ℤ)
53 fzfid 13344 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
54 fzssuz 12951 . . . . . . . . . . . 12 (1...𝑛) ⊆ (ℤ‘1)
5554, 3sseqtrri 4006 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
5655a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1...𝑛) ⊆ ℕ)
5735adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
5837adantlr 713 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
595adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
60 elrege0 12845 . . . . . . . . . . . 12 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
6160simprbi 499 . . . . . . . . . . 11 (𝐴 ∈ (0[,)+∞) → 0 ≤ 𝐴)
6259, 61syl 17 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
6350adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
643, 52, 53, 56, 57, 58, 62, 63isumless 15202 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ≤ Σ𝑘 ∈ ℕ 𝐴)
6545, 64eqbrtrrd 5092 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
6665ralrimiva 3184 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴)
67 brralrspcev 5128 . . . . . . 7 ((Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ Σ𝑘 ∈ ℕ 𝐴) → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
6851, 66, 67syl2anc 586 . . . . . 6 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠)
693, 4, 16, 32, 68climsup 15028 . . . . 5 (𝜑 → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⇝ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
703, 4, 69, 24climrecl 14942 . . . 4 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
7170rexrd 10693 . . 3 (𝜑 → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
72 eqid 2823 . . . . . . 7 (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) = (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
73 sumex 15046 . . . . . . 7 Σ𝑘𝑏 𝐴 ∈ V
7472, 73elrnmpti 5834 . . . . . 6 (𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴)
75 ssnnssfz 30512 . . . . . . . . . 10 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚))
76 fzfid 13344 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → (1...𝑚) ∈ Fin)
77 elfznn 12939 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
7877, 5sylan2 594 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
7960simplbi 500 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0[,)+∞) → 𝐴 ∈ ℝ)
8078, 79syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8180adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
8278, 61syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
8382adantlr 713 . . . . . . . . . . . . . 14 (((𝜑𝑏 ⊆ (1...𝑚)) ∧ 𝑘 ∈ (1...𝑚)) → 0 ≤ 𝐴)
84 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑏 ⊆ (1...𝑚)) → 𝑏 ⊆ (1...𝑚))
8576, 81, 83, 84fsumless 15153 . . . . . . . . . . . . 13 ((𝜑𝑏 ⊆ (1...𝑚)) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8685ex 415 . . . . . . . . . . . 12 (𝜑 → (𝑏 ⊆ (1...𝑚) → Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8786reximdv 3275 . . . . . . . . . . 11 (𝜑 → (∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
8887imp 409 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑚 ∈ ℕ 𝑏 ⊆ (1...𝑚)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
8975, 88sylan2 594 . . . . . . . . 9 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
90 breq1 5071 . . . . . . . . . 10 (𝑥 = Σ𝑘𝑏 𝐴 → (𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9190rexbidv 3299 . . . . . . . . 9 (𝑥 = Σ𝑘𝑏 𝐴 → (∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴 ↔ ∃𝑚 ∈ ℕ Σ𝑘𝑏 𝐴 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9289, 91syl5ibrcom 249 . . . . . . . 8 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9392rexlimdva 3286 . . . . . . 7 (𝜑 → (∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴 → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴))
9493imp 409 . . . . . 6 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
9574, 94sylan2b 595 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ∃𝑚 ∈ ℕ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
96 simpr 487 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 = Σ𝑘𝑏 𝐴)
97 inss2 4208 . . . . . . . . . . . . 13 (𝒫 ℕ ∩ Fin) ⊆ Fin
98 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
9997, 98sseldi 3967 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ Fin)
100 simpll 765 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝜑)
101 inss1 4207 . . . . . . . . . . . . . . . . 17 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
102 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ (𝒫 ℕ ∩ Fin))
103101, 102sseldi 3967 . . . . . . . . . . . . . . . 16 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ∈ 𝒫 ℕ)
104103elpwid 4552 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑏 ⊆ ℕ)
105 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘𝑏)
106104, 105sseldd 3970 . . . . . . . . . . . . . 14 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝑘 ∈ ℕ)
107100, 106, 5syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ (0[,)+∞))
108107, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℝ)
10999, 108fsumrecl 15093 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑏 𝐴 ∈ ℝ)
110109adantr 483 . . . . . . . . . 10 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → Σ𝑘𝑏 𝐴 ∈ ℝ)
11196, 110eqeltrd 2915 . . . . . . . . 9 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
112111r19.29an 3290 . . . . . . . 8 ((𝜑 ∧ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑥 = Σ𝑘𝑏 𝐴) → 𝑥 ∈ ℝ)
11374, 112sylan2b 595 . . . . . . 7 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ∈ ℝ)
114113adantr 483 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ∈ ℝ)
115 fzfid 13344 . . . . . . . 8 (𝜑 → (1...𝑚) ∈ Fin)
116115, 80fsumrecl 15093 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
117116ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ℝ)
11870ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
119 simprr 771 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)
12016frnd 6523 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
121120ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
122 1nn 11651 . . . . . . . . . 10 1 ∈ ℕ
123122ne0ii 4305 . . . . . . . . 9 ℕ ≠ ∅
124 dm0rn0 5797 . . . . . . . . . . 11 (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅)
12516fdmd 6525 . . . . . . . . . . . 12 (𝜑 → dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ℕ)
126125eqeq1d 2825 . . . . . . . . . . 11 (𝜑 → (dom seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
127124, 126syl5bbr 287 . . . . . . . . . 10 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = ∅ ↔ ℕ = ∅))
128127necon3bid 3062 . . . . . . . . 9 (𝜑 → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ↔ ℕ ≠ ∅))
129123, 128mpbiri 260 . . . . . . . 8 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
130129ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
131 1z 12015 . . . . . . . . . . . . . . . 16 1 ∈ ℤ
132 seqfn 13384 . . . . . . . . . . . . . . . 16 (1 ∈ ℤ → seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
133131, 132ax-mp 5 . . . . . . . . . . . . . . 15 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
1343fneq2i 6453 . . . . . . . . . . . . . . 15 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
135133, 134mpbir 233 . . . . . . . . . . . . . 14 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ
136 dffn5 6726 . . . . . . . . . . . . . 14 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
137135, 136mpbi 232 . . . . . . . . . . . . 13 seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) = (𝑛 ∈ ℕ ↦ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
138 fvex 6685 . . . . . . . . . . . . 13 (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ∈ V
139137, 138elrnmpti 5834 . . . . . . . . . . . 12 (𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
140 r19.29 3256 . . . . . . . . . . . . 13 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)))
141 breq1 5071 . . . . . . . . . . . . . . 15 (𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → (𝑧𝑠 ↔ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠))
142141biimparc 482 . . . . . . . . . . . . . 14 (((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
143142rexlimivw 3284 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕ ((seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
144140, 143syl 17 . . . . . . . . . . . 12 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 ∧ ∃𝑛 ∈ ℕ 𝑧 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑧𝑠)
145139, 144sylan2b 595 . . . . . . . . . . 11 ((∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → 𝑧𝑠)
146145ralrimiva 3184 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
147146reximi 3245 . . . . . . . . 9 (∃𝑠 ∈ ℝ ∀𝑛 ∈ ℕ (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) ≤ 𝑠 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
14868, 147syl 17 . . . . . . . 8 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
149148ad2antrr 724 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
150 simpr 487 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
151 simpll 765 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝜑)
15277adantl 484 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ)
153151, 152, 35syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑙 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
154150, 3eleqtrdi 2925 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ (ℤ‘1))
155151, 152, 5syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ (0[,)+∞))
156155, 79syl 17 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℝ)
157156recnd 10671 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑚)) → 𝐴 ∈ ℂ)
158153, 154, 157fsumser 15089 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
159 fveq2 6672 . . . . . . . . . . 11 (𝑛 = 𝑚 → (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚))
160159rspceeqv 3640 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑚)) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
161150, 158, 160syl2anc 586 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
162137, 138elrnmpti 5834 . . . . . . . . 9 𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ Σ𝑘 ∈ (1...𝑚)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
163161, 162sylibr 236 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
164163ad2ant2r 745 . . . . . . 7 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)))
165 suprub 11604 . . . . . . 7 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ Σ𝑘 ∈ (1...𝑚)𝐴 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
166121, 130, 149, 164, 165syl31anc 1369 . . . . . 6 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → Σ𝑘 ∈ (1...𝑚)𝐴 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
167114, 117, 118, 119, 166letrd 10799 . . . . 5 (((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) ∧ (𝑚 ∈ ℕ ∧ 𝑥 ≤ Σ𝑘 ∈ (1...𝑚)𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16895, 167rexlimddv 3293 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → 𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
16970adantr 483 . . . . 5 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ)
170113, 169lenltd 10788 . . . 4 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → (𝑥 ≤ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥))
171168, 170mpbid 234 . . 3 ((𝜑𝑥 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)) → ¬ sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) < 𝑥)
172 simpr1r 1227 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 = +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1731723anassrs 1356 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
17471ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ*)
175 pnfnlt 12526 . . . . . . . 8 (sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ∈ ℝ* → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
176174, 175syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
177 breq1 5071 . . . . . . . . 9 (𝑥 = +∞ → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
178177notbid 320 . . . . . . . 8 (𝑥 = +∞ → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
179178adantl 484 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → (¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ¬ +∞ < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )))
180176, 179mpbird 259 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ¬ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
181173, 180pm2.21dd 197 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 = +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
182 simplll 773 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝜑)
183 simpr1l 1226 . . . . . . . 8 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 ∈ ℝ*)
1841833anassrs 1356 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ ℝ*)
185 simplr 767 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 0 ≤ 𝑥)
186 simpr 487 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < +∞)
187 0xr 10690 . . . . . . . 8 0 ∈ ℝ*
188 pnfxr 10697 . . . . . . . 8 +∞ ∈ ℝ*
189 elico1 12784 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞)))
190187, 188, 189mp2an 690 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥𝑥 < +∞))
191184, 185, 186, 190syl3anbrc 1339 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 ∈ (0[,)+∞))
192 simpr1r 1227 . . . . . . 7 ((𝜑 ∧ ((𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) ∧ 0 ≤ 𝑥𝑥 < +∞)) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
1931923anassrs 1356 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
194120adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ)
195129adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅)
196148adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠)
197194, 195, 1963jca 1124 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠))
198 simprl 769 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ (0[,)+∞))
19936, 198sseldi 3967 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 ∈ ℝ)
200 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
201 suprlub 11607 . . . . . . . . 9 (((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) → (𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ) ↔ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦))
202201biimpa 479 . . . . . . . 8 ((((ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ℝ ∧ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ≠ ∅ ∧ ∃𝑠 ∈ ℝ ∀𝑧 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑧𝑠) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < )) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
203197, 199, 200, 202syl21anc 835 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦)
20440ssriv 3973 . . . . . . . . . . . . . . . . 17 (1...𝑛) ⊆ ℕ
205 ovex 7191 . . . . . . . . . . . . . . . . . 18 (1...𝑛) ∈ V
206205elpw 4545 . . . . . . . . . . . . . . . . 17 ((1...𝑛) ∈ 𝒫 ℕ ↔ (1...𝑛) ⊆ ℕ)
207204, 206mpbir 233 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ 𝒫 ℕ
208 fzfi 13343 . . . . . . . . . . . . . . . 16 (1...𝑛) ∈ Fin
209 elin 4171 . . . . . . . . . . . . . . . 16 ((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑛) ∈ 𝒫 ℕ ∧ (1...𝑛) ∈ Fin))
210207, 208, 209mpbir2an 709 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ (𝒫 ℕ ∩ Fin)
211210a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → (1...𝑛) ∈ (𝒫 ℕ ∩ Fin))
212 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
21345adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
214212, 213eqtr4d 2861 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴)
215 sumeq1 15047 . . . . . . . . . . . . . . 15 (𝑏 = (1...𝑛) → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
216215rspceeqv 3640 . . . . . . . . . . . . . 14 (((1...𝑛) ∈ (𝒫 ℕ ∩ Fin) ∧ 𝑦 = Σ𝑘 ∈ (1...𝑛)𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
217211, 214, 216syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛)) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
218217ex 415 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
219218rexlimdva 3286 . . . . . . . . . . 11 (𝜑 → (∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴))
220137, 138elrnmpti 5834 . . . . . . . . . . 11 (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ↔ ∃𝑛 ∈ ℕ 𝑦 = (seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))‘𝑛))
22172, 73elrnmpti 5834 . . . . . . . . . . 11 (𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)𝑦 = Σ𝑘𝑏 𝐴)
222219, 220, 2213imtr4g 298 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) → 𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)))
223222ssrdv 3975 . . . . . . . . 9 (𝜑 → ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴))
224 ssrexv 4036 . . . . . . . . 9 (ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)) ⊆ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
225223, 224syl 17 . . . . . . . 8 (𝜑 → (∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦))
226225imp 409 . . . . . . 7 ((𝜑 ∧ ∃𝑦 ∈ ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵))𝑥 < 𝑦) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
227203, 226syldan 593 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
228182, 191, 193, 227syl12anc 834 . . . . 5 ((((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) ∧ 𝑥 < +∞) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
229 simplrl 775 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
230 xrlelttric 30478 . . . . . . . 8 ((+∞ ∈ ℝ*𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥𝑥 < +∞))
231188, 230mpan 688 . . . . . . 7 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 < +∞))
232 xgepnf 12561 . . . . . . . 8 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 = +∞))
233232orbi1d 913 . . . . . . 7 (𝑥 ∈ ℝ* → ((+∞ ≤ 𝑥𝑥 < +∞) ↔ (𝑥 = +∞ ∨ 𝑥 < +∞)))
234231, 233mpbid 234 . . . . . 6 (𝑥 ∈ ℝ* → (𝑥 = +∞ ∨ 𝑥 < +∞))
235229, 234syl 17 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → (𝑥 = +∞ ∨ 𝑥 < +∞))
236181, 228, 235mpjaodan 955 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 0 ≤ 𝑥) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
237 0elpw 5258 . . . . . . . . 9 ∅ ∈ 𝒫 ℕ
238 0fin 8748 . . . . . . . . 9 ∅ ∈ Fin
239 elin 4171 . . . . . . . . 9 (∅ ∈ (𝒫 ℕ ∩ Fin) ↔ (∅ ∈ 𝒫 ℕ ∧ ∅ ∈ Fin))
240237, 238, 239mpbir2an 709 . . . . . . . 8 ∅ ∈ (𝒫 ℕ ∩ Fin)
241 sum0 15080 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐴 = 0
242241eqcomi 2832 . . . . . . . 8 0 = Σ𝑘 ∈ ∅ 𝐴
243 sumeq1 15047 . . . . . . . . 9 (𝑏 = ∅ → Σ𝑘𝑏 𝐴 = Σ𝑘 ∈ ∅ 𝐴)
244243rspceeqv 3640 . . . . . . . 8 ((∅ ∈ (𝒫 ℕ ∩ Fin) ∧ 0 = Σ𝑘 ∈ ∅ 𝐴) → ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
245240, 242, 244mp2an 690 . . . . . . 7 𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴
24672, 73elrnmpti 5834 . . . . . . 7 (0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ↔ ∃𝑏 ∈ (𝒫 ℕ ∩ Fin)0 = Σ𝑘𝑏 𝐴)
247245, 246mpbir 233 . . . . . 6 0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)
248 breq2 5072 . . . . . . 7 (𝑦 = 0 → (𝑥 < 𝑦𝑥 < 0))
249248rspcev 3625 . . . . . 6 ((0 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
250247, 249mpan 688 . . . . 5 (𝑥 < 0 → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
251250adantl 484 . . . 4 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) ∧ 𝑥 < 0) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
252 xrlelttric 30478 . . . . . 6 ((0 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ 𝑥𝑥 < 0))
253187, 252mpan 688 . . . . 5 (𝑥 ∈ ℝ* → (0 ≤ 𝑥𝑥 < 0))
254253ad2antrl 726 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → (0 ≤ 𝑥𝑥 < 0))
255236, 251, 254mpjaodan 955 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))) → ∃𝑦 ∈ ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴)𝑥 < 𝑦)
2562, 71, 171, 255eqsupd 8923 . 2 (𝜑 → sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ) = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
257 nfv 1915 . . 3 𝑘𝜑
258 nfcv 2979 . . 3 𝑘
259 nnex 11646 . . . 4 ℕ ∈ V
260259a1i 11 . . 3 (𝜑 → ℕ ∈ V)
261 icossicc 12827 . . . 4 (0[,)+∞) ⊆ (0[,]+∞)
262261, 5sseldi 3967 . . 3 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
263 elex 3514 . . . . . 6 (𝑏 ∈ (𝒫 ℕ ∩ Fin) → 𝑏 ∈ V)
264263adantl 484 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → 𝑏 ∈ V)
265107fmpttd 6881 . . . . 5 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑏𝐴):𝑏⟶(0[,)+∞))
266 esumpfinvallem 31335 . . . . 5 ((𝑏 ∈ V ∧ (𝑘𝑏𝐴):𝑏⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
267264, 265, 266syl2anc 586 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)))
268108recnd 10671 . . . . 5 (((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑏) → 𝐴 ∈ ℂ)
26999, 268gsumfsum 20614 . . . 4 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
270267, 269eqtr3d 2860 . . 3 ((𝜑𝑏 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑏𝐴)) = Σ𝑘𝑏 𝐴)
271257, 258, 260, 262, 270esumval 31307 . 2 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑏 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑏 𝐴), ℝ*, < ))
2723, 4, 35, 43, 69isumclim 15114 . 2 (𝜑 → Σ𝑘 ∈ ℕ 𝐴 = sup(ran seq1( + , (𝑙 ∈ ℕ ↦ 𝐵)), ℝ, < ))
273256, 271, 2723eqtr4d 2868 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148   Or wor 5475  dom cdm 5557  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  supcsup 8906  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cn 11640  cz 11984  cuz 12246  [,)cico 12743  [,]cicc 12744  ...cfz 12895  seqcseq 13372  cli 14843  Σcsu 15044  s cress 16486   Σg cgsu 16716  *𝑠cxrs 16775  fldccnfld 20547  Σ*cesum 31288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-ordt 16776  df-xrs 16777  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-ntr 21630  df-nei 21708  df-cn 21837  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tsms 22737  df-esum 31289
This theorem is referenced by:  esumcvg  31347  esumcvgsum  31349
  Copyright terms: Public domain W3C validator