Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   GIF version

Theorem esumpfinvallem 29935
Description: Lemma for esumpfinval 29936. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))

Proof of Theorem esumpfinvallem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 6450 . . . 4 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝐴𝑉) → 𝐹 ∈ V)
21ancoms 469 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹 ∈ V)
3 ovex 6638 . . . 4 (ℂflds (0[,)+∞)) ∈ V
43a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂflds (0[,)+∞)) ∈ V)
5 ovex 6638 . . . 4 (ℝ*𝑠s (0[,)+∞)) ∈ V
65a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
7 rge0ssre 12229 . . . . . . 7 (0[,)+∞) ⊆ ℝ
8 ax-resscn 9944 . . . . . . 7 ℝ ⊆ ℂ
97, 8sstri 3596 . . . . . 6 (0[,)+∞) ⊆ ℂ
10 eqid 2621 . . . . . . 7 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
11 cnfldbas 19678 . . . . . . 7 ℂ = (Base‘ℂfld)
1210, 11ressbas2 15859 . . . . . 6 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
139, 12ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
14 icossxr 12207 . . . . . 6 (0[,)+∞) ⊆ ℝ*
15 eqid 2621 . . . . . . 7 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
16 xrsbas 19690 . . . . . . 7 * = (Base‘ℝ*𝑠)
1715, 16ressbas2 15859 . . . . . 6 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
1814, 17ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1913, 18eqtr3i 2645 . . . 4 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
2019a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
21 simprl 793 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (Base‘(ℂflds (0[,)+∞))))
2221, 13syl6eleqr 2709 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (0[,)+∞))
23 simprr 795 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))
2423, 13syl6eleqr 2709 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (0[,)+∞))
25 ge0addcl 12233 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
26 ovex 6638 . . . . . . 7 (0[,)+∞) ∈ V
27 cnfldadd 19679 . . . . . . . 8 + = (+g‘ℂfld)
2810, 27ressplusg 15921 . . . . . . 7 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
2926, 28ax-mp 5 . . . . . 6 + = (+g‘(ℂflds (0[,)+∞)))
3029oveqi 6623 . . . . 5 (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦)
3125, 30, 133eltr3g 2714 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
3222, 24, 31syl2anc 692 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
33 simpl 473 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
347, 33sseldi 3585 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
35 simpr 477 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
367, 35sseldi 3585 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℝ)
37 rexadd 12013 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
3837eqcomd 2627 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
3934, 36, 38syl2anc 692 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
40 xrsadd 19691 . . . . . . . 8 +𝑒 = (+g‘ℝ*𝑠)
4115, 40ressplusg 15921 . . . . . . 7 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
4226, 41ax-mp 5 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
4342oveqi 6623 . . . . 5 (𝑥 +𝑒 𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦)
4439, 30, 433eqtr3g 2678 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
4522, 24, 44syl2anc 692 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
46 simpr 477 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹:𝐴⟶(0[,)+∞))
47 ffun 6010 . . . 4 (𝐹:𝐴⟶(0[,)+∞) → Fun 𝐹)
4846, 47syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → Fun 𝐹)
49 frn 6015 . . . . 5 (𝐹:𝐴⟶(0[,)+∞) → ran 𝐹 ⊆ (0[,)+∞))
5046, 49syl 17 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (0[,)+∞))
5150, 13syl6sseq 3635 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (Base‘(ℂflds (0[,)+∞))))
522, 4, 6, 20, 32, 45, 48, 51gsumpropd2 17202 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℂflds (0[,)+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
53 cnfldex 19677 . . . 4 fld ∈ V
5453a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ℂfld ∈ V)
55 simpl 473 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐴𝑉)
569a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ ℂ)
57 0e0icopnf 12231 . . . 4 0 ∈ (0[,)+∞)
5857a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 0 ∈ (0[,)+∞))
59 simpr 477 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
6059addid2d 10188 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
6159addid1d 10187 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
6260, 61jca 554 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
6311, 27, 10, 54, 55, 56, 46, 58, 62gsumress 17204 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℂflds (0[,)+∞)) Σg 𝐹))
64 xrge0base 29488 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
65 xrge0plusg 29490 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
66 ovex 6638 . . . . 5 (0[,]+∞) ∈ V
67 ressress 15866 . . . . 5 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ∈ V) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))))
6866, 26, 67mp2an 707 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞)))
69 incom 3788 . . . . . 6 ((0[,]+∞) ∩ (0[,)+∞)) = ((0[,)+∞) ∩ (0[,]+∞))
70 icossicc 12209 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
71 dfss 3574 . . . . . . 7 ((0[,)+∞) ⊆ (0[,]+∞) ↔ (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞)))
7270, 71mpbi 220 . . . . . 6 (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞))
7369, 72eqtr4i 2646 . . . . 5 ((0[,]+∞) ∩ (0[,)+∞)) = (0[,)+∞)
7473oveq2i 6621 . . . 4 (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))) = (ℝ*𝑠s (0[,)+∞))
7568, 74eqtr2i 2644 . . 3 (ℝ*𝑠s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
76 ovex 6638 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ V
7776a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ V)
7870a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ (0[,]+∞))
79 iccssxr 12205 . . . . . 6 (0[,]+∞) ⊆ ℝ*
80 simpr 477 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
8179, 80sseldi 3585 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
82 xaddid2 12023 . . . . 5 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
8381, 82syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (0 +𝑒 𝑥) = 𝑥)
84 xaddid1 12022 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
8581, 84syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 +𝑒 0) = 𝑥)
8683, 85jca 554 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥))
8764, 65, 75, 77, 55, 78, 46, 58, 86gsumress 17204 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
8852, 63, 873eqtr4d 2665 1 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3189  cin 3558  wss 3559  ran crn 5080  Fun wfun 5846  wf 5848  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  0cc0 9887   + caddc 9890  +∞cpnf 10022  *cxr 10024   +𝑒 cxad 11895  [,)cico 12126  [,]cicc 12127  Basecbs 15788  s cress 15789  +gcplusg 15869   Σg cgsu 16029  *𝑠cxrs 16088  fldccnfld 19674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-addf 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-xadd 11898  df-ico 12130  df-icc 12131  df-fz 12276  df-seq 12749  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-0g 16030  df-gsum 16031  df-xrs 16090  df-cnfld 19675
This theorem is referenced by:  esumpfinval  29936  esumpfinvalf  29937  esumpcvgval  29939  esumcvg  29947
  Copyright terms: Public domain W3C validator