Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpr2 Structured version   Visualization version   GIF version

Theorem esumpr2 29934
Description: Extended sum over a pair, with a relaxed condition compared to esumpr 29933. (Contributed by Thierry Arnoux, 2-Jan-2017.)
Hypotheses
Ref Expression
esumpr.1 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
esumpr.2 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
esumpr.3 (𝜑𝐴𝑉)
esumpr.4 (𝜑𝐵𝑊)
esumpr.5 (𝜑𝐷 ∈ (0[,]+∞))
esumpr.6 (𝜑𝐸 ∈ (0[,]+∞))
esumpr2.1 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
Assertion
Ref Expression
esumpr2 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐷,𝑘   𝑘,𝐸   𝜑,𝑘   𝑘,𝑉   𝑘,𝑊
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem esumpr2
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
2 dfsn2 4166 . . . . . 6 {𝐴} = {𝐴, 𝐴}
3 preq2 4244 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
42, 3syl5req 2668 . . . . 5 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴})
5 esumeq1 29901 . . . . 5 ({𝐴, 𝐵} = {𝐴} → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
61, 4, 53syl 18 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = Σ*𝑘 ∈ {𝐴}𝐶)
7 esumpr.1 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐶 = 𝐷)
8 esumpr.3 . . . . . 6 (𝜑𝐴𝑉)
9 esumpr.5 . . . . . 6 (𝜑𝐷 ∈ (0[,]+∞))
107, 8, 9esumsn 29932 . . . . 5 (𝜑 → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
1110adantr 481 . . . 4 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴}𝐶 = 𝐷)
126, 11eqtrd 2655 . . 3 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = 𝐷)
13 esumpr2.1 . . . . 5 (𝜑 → (𝐴 = 𝐵 → (𝐷 = 0 ∨ 𝐷 = +∞)))
14 oveq2 6618 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 0))
15 0xr 10038 . . . . . . . . 9 0 ∈ ℝ*
16 eleq1 2686 . . . . . . . . 9 (𝐷 = 0 → (𝐷 ∈ ℝ* ↔ 0 ∈ ℝ*))
1715, 16mpbiri 248 . . . . . . . 8 (𝐷 = 0 → 𝐷 ∈ ℝ*)
18 xaddid1 12023 . . . . . . . 8 (𝐷 ∈ ℝ* → (𝐷 +𝑒 0) = 𝐷)
1917, 18syl 17 . . . . . . 7 (𝐷 = 0 → (𝐷 +𝑒 0) = 𝐷)
2014, 19eqtrd 2655 . . . . . 6 (𝐷 = 0 → (𝐷 +𝑒 𝐷) = 𝐷)
21 pnfxr 10044 . . . . . . . . 9 +∞ ∈ ℝ*
22 eleq1 2686 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ∈ ℝ* ↔ +∞ ∈ ℝ*))
2321, 22mpbiri 248 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ∈ ℝ*)
24 pnfnemnf 10046 . . . . . . . . 9 +∞ ≠ -∞
25 neeq1 2852 . . . . . . . . 9 (𝐷 = +∞ → (𝐷 ≠ -∞ ↔ +∞ ≠ -∞))
2624, 25mpbiri 248 . . . . . . . 8 (𝐷 = +∞ → 𝐷 ≠ -∞)
27 xaddpnf1 12008 . . . . . . . 8 ((𝐷 ∈ ℝ*𝐷 ≠ -∞) → (𝐷 +𝑒 +∞) = +∞)
2823, 26, 27syl2anc 692 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 +∞) = +∞)
29 oveq2 6618 . . . . . . 7 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 +∞))
30 id 22 . . . . . . 7 (𝐷 = +∞ → 𝐷 = +∞)
3128, 29, 303eqtr4d 2665 . . . . . 6 (𝐷 = +∞ → (𝐷 +𝑒 𝐷) = 𝐷)
3220, 31jaoi 394 . . . . 5 ((𝐷 = 0 ∨ 𝐷 = +∞) → (𝐷 +𝑒 𝐷) = 𝐷)
3313, 32syl6 35 . . . 4 (𝜑 → (𝐴 = 𝐵 → (𝐷 +𝑒 𝐷) = 𝐷))
3433imp 445 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = 𝐷)
35 simpll 789 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝜑)
36 eqeq2 2632 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝑘 = 𝐴𝑘 = 𝐵))
3736biimprd 238 . . . . . . . . 9 (𝐴 = 𝐵 → (𝑘 = 𝐵𝑘 = 𝐴))
381, 37syl 17 . . . . . . . 8 ((𝜑𝐴 = 𝐵) → (𝑘 = 𝐵𝑘 = 𝐴))
3938imp 445 . . . . . . 7 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝑘 = 𝐴)
4035, 39, 7syl2anc 692 . . . . . 6 (((𝜑𝐴 = 𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷)
41 esumpr.4 . . . . . . 7 (𝜑𝐵𝑊)
4241adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐵𝑊)
439adantr 481 . . . . . 6 ((𝜑𝐴 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4440, 42, 43esumsn 29932 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐷)
45 esumpr.2 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐸)
46 esumpr.6 . . . . . . 7 (𝜑𝐸 ∈ (0[,]+∞))
4745, 41, 46esumsn 29932 . . . . . 6 (𝜑 → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4847adantr 481 . . . . 5 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐵}𝐶 = 𝐸)
4944, 48eqtr3d 2657 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐷 = 𝐸)
5049oveq2d 6626 . . 3 ((𝜑𝐴 = 𝐵) → (𝐷 +𝑒 𝐷) = (𝐷 +𝑒 𝐸))
5112, 34, 503eqtr2d 2661 . 2 ((𝜑𝐴 = 𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
527adantlr 750 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐴) → 𝐶 = 𝐷)
5345adantlr 750 . . 3 (((𝜑𝐴𝐵) ∧ 𝑘 = 𝐵) → 𝐶 = 𝐸)
548adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐴𝑉)
5541adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐵𝑊)
569adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐷 ∈ (0[,]+∞))
5746adantr 481 . . 3 ((𝜑𝐴𝐵) → 𝐸 ∈ (0[,]+∞))
58 simpr 477 . . 3 ((𝜑𝐴𝐵) → 𝐴𝐵)
5952, 53, 54, 55, 56, 57, 58esumpr 29933 . 2 ((𝜑𝐴𝐵) → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
6051, 59pm2.61dane 2877 1 (𝜑 → Σ*𝑘 ∈ {𝐴, 𝐵}𝐶 = (𝐷 +𝑒 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  {csn 4153  {cpr 4155  (class class class)co 6610  0cc0 9888  +∞cpnf 10023  -∞cmnf 10024  *cxr 10025   +𝑒 cxad 11896  [,]cicc 12128  Σ*cesum 29894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-ordt 16093  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-ps 17132  df-tsr 17133  df-plusf 17173  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-subrg 18710  df-abv 18749  df-lmod 18797  df-scaf 18798  df-sra 19104  df-rgmod 19105  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-tmd 21799  df-tgp 21800  df-tsms 21853  df-trg 21886  df-xms 22048  df-ms 22049  df-tms 22050  df-nm 22310  df-ngp 22311  df-nrg 22313  df-nlm 22314  df-ii 22603  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224  df-esum 29895
This theorem is referenced by:  measxun2  30078  measssd  30083  carsgclctun  30188
  Copyright terms: Public domain W3C validator