Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumrnmpt Structured version   Visualization version   GIF version

Theorem esumrnmpt 29244
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.)
Hypotheses
Ref Expression
esumrnmpt.0 𝑘𝐴
esumrnmpt.1 (𝑦 = 𝐵𝐶 = 𝐷)
esumrnmpt.2 (𝜑𝐴𝑉)
esumrnmpt.3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
esumrnmpt.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
esumrnmpt.5 (𝜑Disj 𝑘𝐴 𝐵)
Assertion
Ref Expression
esumrnmpt (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝐶,𝑘   𝑦,𝐷   𝑘,𝑊   𝜑,𝑘,𝑦
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑦)   𝐷(𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑦)

Proof of Theorem esumrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2747 . . 3 𝑘𝐶
2 nfv 1829 . . 3 𝑘𝜑
3 esumrnmpt.0 . . 3 𝑘𝐴
4 esumrnmpt.1 . . 3 (𝑦 = 𝐵𝐶 = 𝐷)
5 esumrnmpt.2 . . 3 (𝜑𝐴𝑉)
6 esumrnmpt.4 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (𝑊 ∖ {∅}))
7 esumrnmpt.5 . . . 4 (𝜑Disj 𝑘𝐴 𝐵)
82, 3, 6, 7disjdsct 28666 . . 3 (𝜑 → Fun (𝑘𝐴𝐵))
9 esumrnmpt.3 . . 3 ((𝜑𝑘𝐴) → 𝐷 ∈ (0[,]+∞))
101, 2, 3, 4, 5, 8, 9, 6esumc 29243 . 2 (𝜑 → Σ*𝑘𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
11 eqid 2606 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
1211rnmpt 5276 . . 3 ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}
13 esumeq1 29226 . . 3 (ran (𝑘𝐴𝐵) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶)
1412, 13ax-mp 5 . 2 Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐵}𝐶
1510, 14syl6reqr 2659 1 (𝜑 → Σ*𝑦 ∈ ran (𝑘𝐴𝐵)𝐶 = Σ*𝑘𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  {cab 2592  wnfc 2734  wrex 2893  cdif 3533  c0 3870  {csn 4121  Disj wdisj 4544  cmpt 4634  ran crn 5026  (class class class)co 6524  0cc0 9789  +∞cpnf 9924  [,]cicc 12002  Σ*cesum 29219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-disj 4545  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-se 4985  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-isom 5796  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-fi 8174  df-oi 8272  df-card 8622  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-3 10924  df-4 10925  df-5 10926  df-6 10927  df-7 10928  df-8 10929  df-9 10930  df-n0 11137  df-z 11208  df-dec 11323  df-uz 11517  df-xadd 11776  df-icc 12006  df-fz 12150  df-fzo 12287  df-seq 12616  df-hash 12932  df-struct 15640  df-ndx 15641  df-slot 15642  df-base 15643  df-sets 15644  df-ress 15645  df-plusg 15724  df-mulr 15725  df-tset 15730  df-ple 15731  df-ds 15734  df-rest 15849  df-topn 15850  df-0g 15868  df-gsum 15869  df-topgen 15870  df-ordt 15927  df-xrs 15928  df-ps 16966  df-tsr 16967  df-mgm 17008  df-sgrp 17050  df-mnd 17061  df-submnd 17102  df-cntz 17516  df-cmn 17961  df-fbas 19507  df-fg 19508  df-top 20460  df-bases 20461  df-topon 20462  df-topsp 20463  df-ntr 20573  df-nei 20651  df-fil 21399  df-fm 21491  df-flim 21492  df-flf 21493  df-tsms 21679  df-esum 29220
This theorem is referenced by:  esumrnmpt2  29260
  Copyright terms: Public domain W3C validator