Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem2 Structured version   Visualization version   GIF version

Theorem etransclem2 40974
 Description: Derivative of 𝐺. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem2.xf 𝑥𝐹
etransclem2.f (𝜑𝐹:ℝ⟶ℂ)
etransclem2.dvnf ((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
etransclem2.g 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
Assertion
Ref Expression
etransclem2 (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
Distinct variable groups:   𝑖,𝐹   𝑅,𝑖,𝑥   𝜑,𝑖,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥,𝑖)

Proof of Theorem etransclem2
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 etransclem2.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
21oveq2i 6825 . 2 (ℝ D 𝐺) = (ℝ D (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
3 eqid 2760 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
43tgioo2 22827 . . 3 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5 reelprrecn 10240 . . . 4 ℝ ∈ {ℝ, ℂ}
65a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
7 reopn 40018 . . . 4 ℝ ∈ (topGen‘ran (,))
87a1i 11 . . 3 (𝜑 → ℝ ∈ (topGen‘ran (,)))
9 fzfid 12986 . . 3 (𝜑 → (0...𝑅) ∈ Fin)
10 fzelp1 12606 . . . . . 6 (𝑖 ∈ (0...𝑅) → 𝑖 ∈ (0...(𝑅 + 1)))
11 etransclem2.dvnf . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
1210, 11sylan2 492 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
13123adant3 1127 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)
14 simp3 1133 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
1513, 14ffvelrnd 6524 . . 3 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥) ∈ ℂ)
16 fzp1elp1 12607 . . . . . 6 (𝑖 ∈ (0...𝑅) → (𝑖 + 1) ∈ (0...(𝑅 + 1)))
17 ovex 6842 . . . . . . 7 (𝑖 + 1) ∈ V
18 eleq1 2827 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → (𝑗 ∈ (0...(𝑅 + 1)) ↔ (𝑖 + 1) ∈ (0...(𝑅 + 1))))
1918anbi2d 742 . . . . . . . 8 (𝑗 = (𝑖 + 1) → ((𝜑𝑗 ∈ (0...(𝑅 + 1))) ↔ (𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1)))))
20 fveq2 6353 . . . . . . . . 9 (𝑗 = (𝑖 + 1) → ((ℝ D𝑛 𝐹)‘𝑗) = ((ℝ D𝑛 𝐹)‘(𝑖 + 1)))
2120feq1d 6191 . . . . . . . 8 (𝑗 = (𝑖 + 1) → (((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ))
2219, 21imbi12d 333 . . . . . . 7 (𝑗 = (𝑖 + 1) → (((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)))
23 eleq1 2827 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖 ∈ (0...(𝑅 + 1)) ↔ 𝑗 ∈ (0...(𝑅 + 1))))
2423anbi2d 742 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝜑𝑖 ∈ (0...(𝑅 + 1))) ↔ (𝜑𝑗 ∈ (0...(𝑅 + 1)))))
25 fveq2 6353 . . . . . . . . . 10 (𝑖 = 𝑗 → ((ℝ D𝑛 𝐹)‘𝑖) = ((ℝ D𝑛 𝐹)‘𝑗))
2625feq1d 6191 . . . . . . . . 9 (𝑖 = 𝑗 → (((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ ↔ ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ))
2724, 26imbi12d 333 . . . . . . . 8 (𝑖 = 𝑗 → (((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ) ↔ ((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ)))
2827, 11chvarv 2408 . . . . . . 7 ((𝜑𝑗 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑗):ℝ⟶ℂ)
2917, 22, 28vtocl 3399 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
3016, 29sylan2 492 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
31303adant3 1127 . . . 4 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ)
3231, 14ffvelrnd 6524 . . 3 ((𝜑𝑖 ∈ (0...𝑅) ∧ 𝑥 ∈ ℝ) → (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥) ∈ ℂ)
33 ffn 6206 . . . . . . . 8 (((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ → ((ℝ D𝑛 𝐹)‘𝑖) Fn ℝ)
3412, 33syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖) Fn ℝ)
35 nfcv 2902 . . . . . . . . . 10 𝑥
36 nfcv 2902 . . . . . . . . . 10 𝑥 D𝑛
37 etransclem2.xf . . . . . . . . . 10 𝑥𝐹
3835, 36, 37nfov 6840 . . . . . . . . 9 𝑥(ℝ D𝑛 𝐹)
39 nfcv 2902 . . . . . . . . 9 𝑥𝑖
4038, 39nffv 6360 . . . . . . . 8 𝑥((ℝ D𝑛 𝐹)‘𝑖)
4140dffn5f 6415 . . . . . . 7 (((ℝ D𝑛 𝐹)‘𝑖) Fn ℝ ↔ ((ℝ D𝑛 𝐹)‘𝑖) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
4234, 41sylib 208 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘𝑖) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)))
4342eqcomd 2766 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥)) = ((ℝ D𝑛 𝐹)‘𝑖))
4443oveq2d 6830 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → (ℝ D (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
45 ax-resscn 10205 . . . . . 6 ℝ ⊆ ℂ
4645a1i 11 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ℝ ⊆ ℂ)
47 etransclem2.f . . . . . . . 8 (𝜑𝐹:ℝ⟶ℂ)
48 ffdm 6223 . . . . . . . 8 (𝐹:ℝ⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
4947, 48syl 17 . . . . . . 7 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
50 cnex 10229 . . . . . . . . 9 ℂ ∈ V
5150a1i 11 . . . . . . . 8 (𝜑 → ℂ ∈ V)
52 reex 10239 . . . . . . . 8 ℝ ∈ V
53 elpm2g 8042 . . . . . . . 8 ((ℂ ∈ V ∧ ℝ ∈ V) → (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)))
5451, 52, 53sylancl 697 . . . . . . 7 (𝜑 → (𝐹 ∈ (ℂ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ)))
5549, 54mpbird 247 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm ℝ))
5655adantr 472 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → 𝐹 ∈ (ℂ ↑pm ℝ))
57 elfznn0 12646 . . . . . 6 (𝑖 ∈ (0...𝑅) → 𝑖 ∈ ℕ0)
5857adantl 473 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → 𝑖 ∈ ℕ0)
59 dvnp1 23907 . . . . 5 ((ℝ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℝ) ∧ 𝑖 ∈ ℕ0) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
6046, 56, 58, 59syl3anc 1477 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (ℝ D ((ℝ D𝑛 𝐹)‘𝑖)))
61 ffn 6206 . . . . . 6 (((ℝ D𝑛 𝐹)‘(𝑖 + 1)):ℝ⟶ℂ → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) Fn ℝ)
6230, 61syl 17 . . . . 5 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) Fn ℝ)
63 nfcv 2902 . . . . . . 7 𝑥(𝑖 + 1)
6438, 63nffv 6360 . . . . . 6 𝑥((ℝ D𝑛 𝐹)‘(𝑖 + 1))
6564dffn5f 6415 . . . . 5 (((ℝ D𝑛 𝐹)‘(𝑖 + 1)) Fn ℝ ↔ ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
6662, 65sylib 208 . . . 4 ((𝜑𝑖 ∈ (0...𝑅)) → ((ℝ D𝑛 𝐹)‘(𝑖 + 1)) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
6744, 60, 663eqtr2d 2800 . . 3 ((𝜑𝑖 ∈ (0...𝑅)) → (ℝ D (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (𝑥 ∈ ℝ ↦ (((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
684, 3, 6, 8, 9, 15, 32, 67dvmptfsum 23957 . 2 (𝜑 → (ℝ D (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
692, 68syl5eq 2806 1 (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Ⅎwnfc 2889  Vcvv 3340   ⊆ wss 3715  {cpr 4323   ↦ cmpt 4881  dom cdm 5266  ran crn 5267   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ↑pm cpm 8026  ℂcc 10146  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151  ℕ0cn0 11504  (,)cioo 12388  ...cfz 12539  Σcsu 14635  TopOpenctopn 16304  topGenctg 16320  ℂfldccnfld 19968   D cdv 23846   D𝑛 cdvn 23847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-icc 12395  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-dvn 23851 This theorem is referenced by:  etransclem46  41018
 Copyright terms: Public domain W3C validator