Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem20 Structured version   Visualization version   GIF version

Theorem etransclem20 39778
Description: 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem20.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem20.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem20.p (𝜑𝑃 ∈ ℕ)
etransclem20.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem20.J (𝜑𝐽 ∈ (0...𝑀))
etransclem20.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem20 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem20
StepHypRef Expression
1 iftrue 4064 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
2 0cnd 9977 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → 0 ∈ ℂ)
31, 2eqeltrd 2698 . . . . 5 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
43adantl 482 . . . 4 (((𝜑𝑥𝑋) ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
5 simpr 477 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
65iffalsed 4069 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
7 etransclem20.p . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
8 nnm1nn0 11278 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
107nnnn0d 11295 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
119, 10ifcld 4103 . . . . . . . . . . 11 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1211faccld 13011 . . . . . . . . . 10 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ)
1312nncnd 10980 . . . . . . . . 9 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1413adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1511nn0zd 11424 . . . . . . . . . . . . 13 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
16 etransclem20.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1716nn0zd 11424 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1815, 17zsubcld 11431 . . . . . . . . . . . 12 (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
1918adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
2016nn0red 11296 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
2120adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ)
2211nn0red 11296 . . . . . . . . . . . . . 14 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
2322adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
24 simpr 477 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
2521, 23, 24nltled 10131 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
2623, 21subge0d 10561 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2725, 26mpbird 247 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))
28 elnn0z 11334 . . . . . . . . . . 11 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔ ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
2919, 27, 28sylanbrc 697 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
3029faccld 13011 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ)
3130nncnd 10980 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
3230nnne0d 11009 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0)
3314, 31, 32divcld 10745 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
3433adantlr 750 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
35 etransclem20.s . . . . . . . . . . 11 (𝜑𝑆 ∈ {ℝ, ℂ})
36 etransclem20.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3735, 36dvdmsscn 39457 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
3837sselda 3583 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
39 etransclem20.J . . . . . . . . . . 11 (𝜑𝐽 ∈ (0...𝑀))
40 elfzelz 12284 . . . . . . . . . . . 12 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
4140zcnd 11427 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
4239, 41syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℂ)
4342adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
4438, 43subcld 10336 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
4544adantr 481 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝐽) ∈ ℂ)
4629adantlr 750 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
4745, 46expcld 12948 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
4834, 47mulcld 10004 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
496, 48eqeltrd 2698 . . . 4 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
504, 49pm2.61dan 831 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
51 eqid 2621 . . 3 (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
5250, 51fmptd 6340 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ)
53 etransclem20.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5435, 36, 7, 53, 39, 16etransclem17 39775 . . 3 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
5554feq1d 5987 . 2 (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ))
5652, 55mpbird 247 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  ifcif 4058  {cpr 4150   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885   < clt 10018  cle 10019  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  ...cfz 12268  cexp 12800  !cfa 13000  t crest 16002  TopOpenctopn 16003  fldccnfld 19665   D𝑛 cdvn 23534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-fac 13001  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-dvn 23538
This theorem is referenced by:  etransclem27  39785  etransclem29  39787  etransclem31  39789  etransclem32  39790  etransclem33  39791  etransclem34  39792
  Copyright terms: Public domain W3C validator