Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem23 Structured version   Visualization version   GIF version

Theorem etransclem23 38947
Description: This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem23.a (𝜑𝐴:ℕ0⟶ℤ)
etransclem23.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem23.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
etransclem23.p (𝜑𝑃 ∈ ℕ)
etransclem23.m (𝜑𝑀 ∈ ℕ)
etransclem23.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem23.lt1 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
Assertion
Ref Expression
etransclem23 (𝜑 → (abs‘𝐾) < 1)
Distinct variable groups:   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗)

Proof of Theorem etransclem23
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem23.k . . . . . 6 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
2 etransclem23.l . . . . . . 7 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
32oveq1i 6537 . . . . . 6 (𝐿 / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
41, 3eqtri 2631 . . . . 5 𝐾 = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))
54fveq2i 6091 . . . 4 (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1))))
65a1i 11 . . 3 (𝜑 → (abs‘𝐾) = (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))))
7 fzfid 12589 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
8 etransclem23.a . . . . . . . . . 10 (𝜑𝐴:ℕ0⟶ℤ)
98adantr 479 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
10 elfznn0 12257 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
1110adantl 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
129, 11ffvelrnd 6253 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
1312zcnd 11315 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
14 ere 14604 . . . . . . . . . 10 e ∈ ℝ
1514recni 9908 . . . . . . . . 9 e ∈ ℂ
1615a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
17 elfzelz 12168 . . . . . . . . . 10 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
1817zcnd 11315 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
1918adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
2016, 19cxpcld 24171 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
2113, 20mulcld 9916 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
2215a1i 11 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℂ)
23 elioore 12032 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℝ)
2423recnd 9924 . . . . . . . . . . 11 (𝑥 ∈ (0(,)𝑗) → 𝑥 ∈ ℂ)
2524adantl 480 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℂ)
2625negcld 10230 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℂ)
2722, 26cxpcld 24171 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℂ)
28 ax-resscn 9849 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
2928a1i 11 . . . . . . . . . . . 12 (𝜑 → ℝ ⊆ ℂ)
30 etransclem23.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
31 etransclem23.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
3229, 30, 31etransclem8 38932 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℂ)
3332adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝐹:ℝ⟶ℂ)
3423adantl 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
3533, 34ffvelrnd 6253 . . . . . . . . 9 ((𝜑𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3635adantlr 746 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) ∈ ℂ)
3727, 36mulcld 9916 . . . . . . 7 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
38 reelprrecn 9884 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ {ℝ, ℂ})
40 reopn 38238 . . . . . . . . . 10 ℝ ∈ (topGen‘ran (,))
41 eqid 2609 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241tgioo2 22346 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4340, 42eleqtri 2685 . . . . . . . . 9 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4443a1i 11 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4530adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
46 etransclem23.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
4746nnnn0d 11198 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ0)
4847adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℕ0)
49 etransclem6 38930 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
50 etransclem6 38930 . . . . . . . . 9 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
5131, 49, 503eqtri 2635 . . . . . . . 8 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
52 0red 9897 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ∈ ℝ)
5317zred 11314 . . . . . . . . 9 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
5453adantl 480 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℝ)
5539, 44, 45, 48, 51, 52, 54etransclem18 38942 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
5637, 55itgcl 23273 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥 ∈ ℂ)
5721, 56mulcld 9916 . . . . 5 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
587, 57fsumcl 14257 . . . 4 (𝜑 → Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℂ)
59 nnm1nn0 11181 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6030, 59syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6160faccld 12888 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6261nncnd 10883 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6361nnne0d 10912 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6458, 62, 63absdivd 13988 . . 3 (𝜑 → (abs‘(Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) / (!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))))
6561nnred 10882 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ)
6661nnnn0d 11198 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ0)
6766nn0ge0d 11201 . . . . 5 (𝜑 → 0 ≤ (!‘(𝑃 − 1)))
6865, 67absidd 13955 . . . 4 (𝜑 → (abs‘(!‘(𝑃 − 1))) = (!‘(𝑃 − 1)))
6968oveq2d 6543 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (abs‘(!‘(𝑃 − 1)))) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
706, 64, 693eqtrd 2647 . 2 (𝜑 → (abs‘𝐾) = ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))))
712, 58syl5eqel 2691 . . . . . . 7 (𝜑𝐿 ∈ ℂ)
7271, 62, 63divcld 10650 . . . . . 6 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) ∈ ℂ)
731, 72syl5eqel 2691 . . . . 5 (𝜑𝐾 ∈ ℂ)
7473abscld 13969 . . . 4 (𝜑 → (abs‘𝐾) ∈ ℝ)
7570, 74eqeltrrd 2688 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ∈ ℝ)
7646nnred 10882 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
7730nnnn0d 11198 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ0)
7876, 77reexpcld 12842 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀𝑃) ∈ ℝ)
79 peano2nn0 11180 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
8047, 79syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀 + 1) ∈ ℕ0)
8178, 80reexpcld 12842 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
8281recnd 9924 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
8346nncnd 10883 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℂ)
8482, 83mulcomd 9917 . . . . . . . . . . . 12 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))))
8530nncnd 10883 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℂ)
86 1cnd 9912 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
8785, 86npcand 10247 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8887eqcomd 2615 . . . . . . . . . . . . . . 15 (𝜑𝑃 = ((𝑃 − 1) + 1))
8988oveq2d 6543 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)))
9080nn0cnd 11200 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ ℂ)
9190, 85mulcomd 9917 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑀 + 1) · 𝑃) = (𝑃 · (𝑀 + 1)))
9291oveq2d 6543 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = (𝑀↑(𝑃 · (𝑀 + 1))))
9383, 77, 80expmuld 12828 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑((𝑀 + 1) · 𝑃)) = ((𝑀↑(𝑀 + 1))↑𝑃))
9483, 80, 77expmuld 12828 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑃 · (𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
9592, 93, 943eqtr3d 2651 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
9676, 80reexpcld 12842 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
9796recnd 9924 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
9897, 60expp1d 12826 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑((𝑃 − 1) + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
9989, 95, 983eqtr3d 2651 . . . . . . . . . . . . 13 (𝜑 → ((𝑀𝑃)↑(𝑀 + 1)) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1))))
10099oveq2d 6543 . . . . . . . . . . . 12 (𝜑 → (𝑀 · ((𝑀𝑃)↑(𝑀 + 1))) = (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))))
10197, 60expcld 12825 . . . . . . . . . . . . . 14 (𝜑 → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
10283, 101, 97mul12d 10096 . . . . . . . . . . . . 13 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))))
10383, 97mulcld 9916 . . . . . . . . . . . . . 14 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
104101, 103mulcomd 9917 . . . . . . . . . . . . 13 (𝜑 → (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀 · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
105102, 104eqtrd 2643 . . . . . . . . . . . 12 (𝜑 → (𝑀 · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) · (𝑀↑(𝑀 + 1)))) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
10684, 100, 1053eqtrd 2647 . . . . . . . . . . 11 (𝜑 → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
107106adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) = ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
108107oveq2d 6543 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
10921abscld 13969 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
110109recnd 9924 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
111103adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
112101adantr 479 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) ∈ ℂ)
113110, 111, 112mulassd 9919 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ((𝑀 · (𝑀↑(𝑀 + 1))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1)))))
114108, 113eqtr4d 2646 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
115114sumeq2dv 14227 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
116110, 111mulcld 9916 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
1177, 101, 116fsummulc1 14305 . . . . . . 7 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) = Σ𝑗 ∈ (0...𝑀)(((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
118115, 117eqtr4d 2646 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))))
119118oveq1d 6542 . . . . 5 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))))
1207, 116fsumcl 14257 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
121120, 101, 62, 63divassd 10685 . . . . 5 (𝜑 → ((Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · ((𝑀↑(𝑀 + 1))↑(𝑃 − 1))) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
122119, 121eqtrd 2643 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
12381adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
12476adantr 479 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
125123, 124remulcld 9926 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀) ∈ ℝ)
126109, 125remulcld 9926 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
1277, 126fsumrecl 14258 . . . . 5 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) ∈ ℝ)
128127, 61nndivred 10916 . . . 4 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))) ∈ ℝ)
129122, 128eqeltrrd 2688 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) ∈ ℝ)
130 1red 9911 . . 3 (𝜑 → 1 ∈ ℝ)
13158abscld 13969 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
13261nnrpd 11702 . . . . 5 (𝜑 → (!‘(𝑃 − 1)) ∈ ℝ+)
13357abscld 13969 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1347, 133fsumrecl 14258 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ∈ ℝ)
1357, 57fsumabs 14320 . . . . . 6 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
13681ad2antrr 757 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℝ)
137 ioombl 23057 . . . . . . . . . . . 12 (0(,)𝑗) ∈ dom vol
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (0(,)𝑗) ∈ dom vol)
139 0red 9897 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ∈ ℝ)
140 elfzle1 12170 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
141 volioo 38637 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ 0 ≤ 𝑗) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
142139, 53, 140, 141syl3anc 1317 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = (𝑗 − 0))
14353, 139resubcld 10309 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) ∈ ℝ)
144142, 143eqeltrd 2687 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ∈ ℝ)
145144adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ∈ ℝ)
14682adantr 479 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ)
147 iblconstmpt 38644 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
148138, 145, 146, 147syl3anc 1317 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ ((𝑀𝑃)↑(𝑀 + 1))) ∈ 𝐿1)
149136, 148itgrecl 23287 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ∈ ℝ)
150109, 149remulcld 9926 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
1517, 150fsumrecl 14258 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ∈ ℝ)
15221, 56absmuld 13987 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) = ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)))
15356abscld 13969 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ∈ ℝ)
15421absge0d 13977 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ (abs‘((𝐴𝑗) · (e↑𝑐𝑗))))
15537abscld 13969 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ℝ)
15637, 55iblabs 23318 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥 ∈ (0(,)𝑗) ↦ (abs‘((e↑𝑐-𝑥) · (𝐹𝑥)))) ∈ 𝐿1)
157155, 156itgrecl 23287 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ∈ ℝ)
15837, 55itgabs 23324 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥)
15927, 36absmuld 13987 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) = ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))))
16027abscld 13969 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ∈ ℝ)
161 1red 9911 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
16236abscld 13969 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ∈ ℝ)
16327absge0d 13977 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(e↑𝑐-𝑥)))
16436absge0d 13977 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ (abs‘(𝐹𝑥)))
16514a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → e ∈ ℝ)
166 0re 9896 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
167 epos 14720 . . . . . . . . . . . . . . . . . . . . . 22 0 < e
168166, 14, 167ltleii 10011 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ e
169168a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → 0 ≤ e)
17023renegcld 10308 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (0(,)𝑗) → -𝑥 ∈ ℝ)
171165, 169, 170recxpcld 24186 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → (e↑𝑐-𝑥) ∈ ℝ)
172165, 169, 170cxpge0d 24187 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (0(,)𝑗) → 0 ≤ (e↑𝑐-𝑥))
173171, 172absidd 13955 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (0(,)𝑗) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
174173adantl 480 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) = (e↑𝑐-𝑥))
175171adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ∈ ℝ)
176 1red 9911 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 ∈ ℝ)
177 0xr 9942 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
178177a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ*)
17953rexrd 9945 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ*)
180179adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ*)
181 simpr 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ (0(,)𝑗))
182 ioogtlb 38361 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
183178, 180, 181, 182syl3anc 1317 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 < 𝑥)
18423adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
185184lt0neg2d 10447 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (0 < 𝑥 ↔ -𝑥 < 0))
186183, 185mpbid 220 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 < 0)
18714a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → e ∈ ℝ)
188 1lt2 11041 . . . . . . . . . . . . . . . . . . . . . . 23 1 < 2
189 egt2lt3 14719 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 < e ∧ e < 3)
190189simpli 472 . . . . . . . . . . . . . . . . . . . . . . 23 2 < e
191 1re 9895 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℝ
192 2re 10937 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ ℝ
193191, 192, 14lttri 10014 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 < 2 ∧ 2 < e) → 1 < e)
194188, 190, 193mp2an 703 . . . . . . . . . . . . . . . . . . . . . 22 1 < e
195194a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 1 < e)
196170adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → -𝑥 ∈ ℝ)
197 0red 9897 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ∈ ℝ)
198187, 195, 196, 197cxpltd 24182 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (-𝑥 < 0 ↔ (e↑𝑐-𝑥) < (e↑𝑐0)))
199186, 198mpbid 220 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < (e↑𝑐0))
200 cxp0 24133 . . . . . . . . . . . . . . . . . . . 20 (e ∈ ℂ → (e↑𝑐0) = 1)
20115, 200mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐0) = 1)
202199, 201breqtrd 4603 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) < 1)
203175, 176, 202ltled 10036 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (e↑𝑐-𝑥) ≤ 1)
204174, 203eqbrtrd 4599 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
205204adantll 745 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(e↑𝑐-𝑥)) ≤ 1)
20628a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ℝ ⊆ ℂ)
20730ad2antrr 757 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑃 ∈ ℕ)
20847ad2antrr 757 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℕ0)
20931, 49eqtri 2631 . . . . . . . . . . . . . . . . . . 19 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏ ∈ (1...𝑀)((𝑦)↑𝑃)))
21023adantl 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 ∈ ℝ)
211206, 207, 208, 209, 210etransclem13 38937 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (𝐹𝑥) = ∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)))
212211fveq2d 6092 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
213 nn0uz 11554 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
21423adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℝ)
215 nn0re 11148 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℝ)
216215adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℝ)
217214, 216resubcld 10309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
218217adantll 745 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℝ)
21960, 77ifcld 4080 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
220219ad3antrrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
221218, 220reexpcld 12842 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
222221recnd 9924 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → ((𝑥)↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
223213, 208, 222fprodabs 14489 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘∏ ∈ (0...𝑀)((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))))
224 elfznn0 12257 . . . . . . . . . . . . . . . . . . . 20 ( ∈ (0...𝑀) → ∈ ℕ0)
22524adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → 𝑥 ∈ ℂ)
226 nn0cn 11149 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ ℕ0 ∈ ℂ)
227226adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → ∈ ℂ)
228225, 227subcld 10243 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
229228adantll 745 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ ℕ0) → (𝑥) ∈ ℂ)
230224, 229sylan2 489 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
231219ad3antrrr 761 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
232230, 231absexpd 13985 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
233232prodeq2dv 14438 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(abs‘((𝑥)↑if( = 0, (𝑃 − 1), 𝑃))) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
234212, 223, 2333eqtrd 2647 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) = ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
235 nfv 1829 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗))
236 fzfid 12589 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (0...𝑀) ∈ Fin)
237224, 228sylan2 489 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℂ)
238237abscld 13969 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
239238adantll 745 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ∈ ℝ)
240239, 231reexpcld 12842 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
241237absge0d 13977 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
242241adantll 745 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ (abs‘(𝑥)))
243239, 231, 242expge0d 12843 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)))
24478ad3antrrr 761 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀𝑃) ∈ ℝ)
24576ad3antrrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀 ∈ ℝ)
246245, 231reexpcld 12842 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ∈ ℝ)
247224, 218sylan2 489 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ∈ ℝ)
24824adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
249224, 227sylan2 489 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → ∈ ℂ)
250248, 249negsubdi2d 10259 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (0(,)𝑗) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
251250adantll 745 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) = (𝑥))
252224adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℕ0)
253252nn0red 11199 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ∈ ℝ)
254 0red 9897 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ∈ ℝ)
255210adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥 ∈ ℝ)
256 elfzle2 12171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ( ∈ (0...𝑀) → 𝑀)
257256adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑀)
258197, 184, 183ltled 10036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
259258adantll 745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 0 ≤ 𝑥)
260259adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ 𝑥)
261253, 254, 245, 255, 257, 260le2subd 10496 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
26283subid1d 10232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑀 − 0) = 𝑀)
263262ad3antrrr 761 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀 − 0) = 𝑀)
264261, 263breqtrd 4603 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
265251, 264eqbrtrd 4599 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -(𝑥) ≤ 𝑀)
266247, 245, 265lenegcon1d 10458 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → -𝑀 ≤ (𝑥))
267 elfzel2 12166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
268267zred 11314 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
269268adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑀 ∈ ℝ)
27053adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗 ∈ ℝ)
271 iooltub 38379 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((0 ∈ ℝ*𝑗 ∈ ℝ*𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
272178, 180, 181, 271syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑗)
273 elfzle2 12171 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
274273adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑗𝑀)
275184, 270, 269, 272, 274ltletrd 10048 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥 < 𝑀)
276184, 269, 275ltled 10036 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑗 ∈ (0...𝑀) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
277276adantll 745 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → 𝑥𝑀)
278277adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑥𝑀)
279252nn0ge0d 11201 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 0 ≤ )
280255, 254, 245, 253, 278, 279le2subd 10496 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ (𝑀 − 0))
281280, 263breqtrd 4603 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑥) ≤ 𝑀)
282247, 245absled 13963 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥)) ≤ 𝑀 ↔ (-𝑀 ≤ (𝑥) ∧ (𝑥) ≤ 𝑀)))
283266, 281, 282mpbir2and 958 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (abs‘(𝑥)) ≤ 𝑀)
284 leexp1a 12736 . . . . . . . . . . . . . . . . . . . 20 ((((abs‘(𝑥)) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if( = 0, (𝑃 − 1), 𝑃) ∈ ℕ0) ∧ (0 ≤ (abs‘(𝑥)) ∧ (abs‘(𝑥)) ≤ 𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
285239, 245, 231, 242, 283, 284syl32anc 1325 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀↑if( = 0, (𝑃 − 1), 𝑃)))
28646nnge1d 10910 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 1 ≤ 𝑀)
287286ad3antrrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 1 ≤ 𝑀)
288219nn0zd 11312 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
28977nn0zd 11312 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ∈ ℤ)
290 iftrue 4041 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( = 0 → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
291290adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1))
29230nnred 10882 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑃 ∈ ℝ)
293292lem1d 10806 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑃 − 1) ≤ 𝑃)
294293adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 = 0) → (𝑃 − 1) ≤ 𝑃)
295291, 294eqbrtrd 4599 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
296 iffalse 4044 . . . . . . . . . . . . . . . . . . . . . . . . 25 = 0 → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
297296adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) = 𝑃)
298292leidd 10443 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑃𝑃)
299298adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ = 0) → 𝑃𝑃)
300297, 299eqbrtrd 4599 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ = 0) → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
301295, 300pm2.61dan 827 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃)
302 eluz2 11525 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)) ↔ (if( = 0, (𝑃 − 1), 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ if( = 0, (𝑃 − 1), 𝑃) ≤ 𝑃))
303288, 289, 301, 302syl3anbrc 1238 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
304303ad3antrrr 761 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → 𝑃 ∈ (ℤ‘if( = 0, (𝑃 − 1), 𝑃)))
305245, 287, 304leexp2ad 12858 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → (𝑀↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
306240, 246, 244, 285, 305letrd 10045 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) ∧ ∈ (0...𝑀)) → ((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ (𝑀𝑃))
307235, 236, 240, 243, 244, 306fprodle 14512 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ∏ ∈ (0...𝑀)(𝑀𝑃))
30878recnd 9924 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀𝑃) ∈ ℂ)
309 fprodconst 14493 . . . . . . . . . . . . . . . . . . . 20 (((0...𝑀) ∈ Fin ∧ (𝑀𝑃) ∈ ℂ) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
3107, 308, 309syl2anc 690 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(#‘(0...𝑀))))
311 hashfz0 13031 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (#‘(0...𝑀)) = (𝑀 + 1))
31247, 311syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (#‘(0...𝑀)) = (𝑀 + 1))
313312oveq2d 6543 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝑀𝑃)↑(#‘(0...𝑀))) = ((𝑀𝑃)↑(𝑀 + 1)))
314310, 313eqtrd 2643 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
315314ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)(𝑀𝑃) = ((𝑀𝑃)↑(𝑀 + 1)))
316307, 315breqtrd 4603 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ∏ ∈ (0...𝑀)((abs‘(𝑥))↑if( = 0, (𝑃 − 1), 𝑃)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
317234, 316eqbrtrd 4599 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘(𝐹𝑥)) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
318160, 161, 162, 136, 163, 164, 205, 317lemul12ad 10815 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ (1 · ((𝑀𝑃)↑(𝑀 + 1))))
31982mulid2d 9914 . . . . . . . . . . . . . . 15 (𝜑 → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
320319ad2antrr 757 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (1 · ((𝑀𝑃)↑(𝑀 + 1))) = ((𝑀𝑃)↑(𝑀 + 1)))
321318, 320breqtrd 4603 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → ((abs‘(e↑𝑐-𝑥)) · (abs‘(𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
322159, 321eqbrtrd 4599 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ (0(,)𝑗)) → (abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) ≤ ((𝑀𝑃)↑(𝑀 + 1)))
323156, 148, 155, 136, 322itgle 23299 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)(abs‘((e↑𝑐-𝑥) · (𝐹𝑥))) d𝑥 ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
324153, 157, 149, 158, 323letrd 10045 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥) ≤ ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥)
325153, 149, 109, 154, 324lemul2ad 10813 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (abs‘∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
326152, 325eqbrtrd 4599 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
3277, 133, 150, 326fsumle 14318 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥))
328 itgconst 23308 . . . . . . . . . . 11 (((0(,)𝑗) ∈ dom vol ∧ (vol‘(0(,)𝑗)) ∈ ℝ ∧ ((𝑀𝑃)↑(𝑀 + 1)) ∈ ℂ) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
329138, 145, 146, 328syl3anc 1317 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 = (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))))
33047nn0ge0d 11201 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ 𝑀)
33176, 77, 330expge0d 12843 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (𝑀𝑃))
33278, 80, 331expge0d 12843 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
333332adantr 479 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → 0 ≤ ((𝑀𝑃)↑(𝑀 + 1)))
33418subid1d 10232 . . . . . . . . . . . . . 14 (𝑗 ∈ (0...𝑀) → (𝑗 − 0) = 𝑗)
335142, 334eqtrd 2643 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) = 𝑗)
336335, 273eqbrtrd 4599 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → (vol‘(0(,)𝑗)) ≤ 𝑀)
337336adantl 480 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀)) → (vol‘(0(,)𝑗)) ≤ 𝑀)
338145, 124, 123, 333, 337lemul2ad 10813 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑀)) → (((𝑀𝑃)↑(𝑀 + 1)) · (vol‘(0(,)𝑗))) ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
339329, 338eqbrtrd 4599 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑀)) → ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥 ≤ (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀))
340149, 125, 109, 154, 339lemul2ad 10813 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
3417, 150, 126, 340fsumle 14318 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · ∫(0(,)𝑗)((𝑀𝑃)↑(𝑀 + 1)) d𝑥) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
342134, 151, 127, 327, 341letrd 10045 . . . . . 6 (𝜑 → Σ𝑗 ∈ (0...𝑀)(abs‘(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
343131, 134, 127, 135, 342letrd 10045 . . . . 5 (𝜑 → (abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) ≤ Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)))
344131, 127, 132, 343lediv1dd 11762 . . . 4 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (((𝑀𝑃)↑(𝑀 + 1)) · 𝑀)) / (!‘(𝑃 − 1))))
345344, 122breqtrd 4603 . . 3 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) ≤ (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))))
346 etransclem23.lt1 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
34775, 129, 130, 345, 346lelttrd 10046 . 2 (𝜑 → ((abs‘Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)) / (!‘(𝑃 − 1))) < 1)
34870, 347eqbrtrd 4599 1 (𝜑 → (abs‘𝐾) < 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  wss 3539  ifcif 4035  {cpr 4126   class class class wbr 4577  cmpt 4637  dom cdm 5028  ran crn 5029  wf 5786  cfv 5790  (class class class)co 6527  Fincfn 7818  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  *cxr 9929   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10533  cn 10867  2c2 10917  3c3 10918  0cn0 11139  cz 11210  cuz 11519  (,)cioo 12002  ...cfz 12152  cexp 12677  !cfa 12877  #chash 12934  abscabs 13768  Σcsu 14210  cprod 14420  eceu 14578  t crest 15850  TopOpenctopn 15851  topGenctg 15867  fldccnfld 19513  volcvol 22956  𝐿1cibl 23109  citg 23110  𝑐ccxp 24023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-ofr 6773  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-omul 7429  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-acn 8628  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-prod 14421  df-ef 14583  df-e 14584  df-sin 14585  df-cos 14586  df-tan 14587  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-ovol 22957  df-vol 22958  df-mbf 23111  df-itg1 23112  df-itg2 23113  df-ibl 23114  df-itg 23115  df-0p 23160  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025
This theorem is referenced by:  etransclem47  38971
  Copyright terms: Public domain W3C validator