Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem26 Structured version   Visualization version   GIF version

Theorem etransclem26 39781
Description: Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem26.p (𝜑𝑃 ∈ ℕ)
etransclem26.m (𝜑𝑀 ∈ ℕ0)
etransclem26.n (𝜑𝑁 ∈ ℕ0)
etransclem26.jz (𝜑𝐽 ∈ ℤ)
etransclem26.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem26.d (𝜑𝐷 ∈ (𝐶𝑁))
Assertion
Ref Expression
etransclem26 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑗,𝑛,𝑐)   𝐽(𝑗,𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem26
StepHypRef Expression
1 etransclem26.d . . . . . . . . . 10 (𝜑𝐷 ∈ (𝐶𝑁))
2 etransclem26.c . . . . . . . . . . 11 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
3 etransclem26.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
42, 3etransclem12 39767 . . . . . . . . . 10 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
51, 4eleqtrd 2700 . . . . . . . . 9 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
6 fveq1 6147 . . . . . . . . . . . 12 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
76sumeq2ad 39198 . . . . . . . . . . 11 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
87eqeq1d 2623 . . . . . . . . . 10 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
98elrab 3346 . . . . . . . . 9 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
105, 9sylib 208 . . . . . . . 8 (𝜑 → (𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1110simprd 479 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1211eqcomd 2627 . . . . . 6 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1312fveq2d 6152 . . . . 5 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
1413oveq1d 6619 . . . 4 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
15 nfcv 2761 . . . . 5 𝑗𝐷
16 fzfid 12712 . . . . 5 (𝜑 → (0...𝑀) ∈ Fin)
17 nn0ex 11242 . . . . . . 7 0 ∈ V
18 fzssnn0 38994 . . . . . . 7 (0...𝑁) ⊆ ℕ0
19 mapss 7844 . . . . . . 7 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2017, 18, 19mp2an 707 . . . . . 6 ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀))
2110simpld 475 . . . . . 6 (𝜑𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2220, 21sseldi 3581 . . . . 5 (𝜑𝐷 ∈ (ℕ0𝑚 (0...𝑀)))
2315, 16, 22mccl 39231 . . . 4 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2414, 23eqeltrd 2698 . . 3 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
2524nnzd 11425 . 2 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
26 etransclem26.p . . . 4 (𝜑𝑃 ∈ ℕ)
27 etransclem26.m . . . 4 (𝜑𝑀 ∈ ℕ0)
28 elmapi 7823 . . . . 5 (𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
2921, 28syl 17 . . . 4 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
30 etransclem26.jz . . . 4 (𝜑𝐽 ∈ ℤ)
3126, 27, 29, 30etransclem10 39765 . . 3 (𝜑 → if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) ∈ ℤ)
32 fzfid 12712 . . . 4 (𝜑 → (1...𝑀) ∈ Fin)
3326adantr 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
3429adantr 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
35 0z 11332 . . . . . . . 8 0 ∈ ℤ
36 fzp1ss 12334 . . . . . . . 8 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
3735, 36ax-mp 5 . . . . . . 7 ((0 + 1)...𝑀) ⊆ (0...𝑀)
38 1e0p1 11496 . . . . . . . . . 10 1 = (0 + 1)
3938oveq1i 6614 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
4039eleq2i 2690 . . . . . . . 8 (𝑗 ∈ (1...𝑀) ↔ 𝑗 ∈ ((0 + 1)...𝑀))
4140biimpi 206 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ((0 + 1)...𝑀))
4237, 41sseldi 3581 . . . . . 6 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
4342adantl 482 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
4430adantr 481 . . . . 5 ((𝜑𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
4533, 34, 43, 44etransclem3 39758 . . . 4 ((𝜑𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4632, 45fprodzcl 14609 . . 3 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4731, 46zmulcld 11432 . 2 (𝜑 → (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
4825, 47zmulcld 11432 1 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {crab 2911  Vcvv 3186  wss 3555  ifcif 4058   class class class wbr 4613  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   < clt 10018  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  cz 11321  ...cfz 12268  cexp 12800  !cfa 13000  Σcsu 14350  cprod 14560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-prod 14561
This theorem is referenced by:  etransclem28  39783  etransclem36  39791  etransclem38  39793
  Copyright terms: Public domain W3C validator