Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem3 Structured version   Visualization version   GIF version

Theorem etransclem3 39787
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem3.n (𝜑𝑃 ∈ ℕ)
etransclem3.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem3.j (𝜑𝐽 ∈ (0...𝑀))
etransclem3.4 (𝜑𝐾 ∈ ℤ)
Assertion
Ref Expression
etransclem3 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Proof of Theorem etransclem3
StepHypRef Expression
1 0zd 11341 . 2 ((𝜑𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
2 0zd 11341 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ∈ ℤ)
3 etransclem3.n . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
43nnzd 11433 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
54adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℤ)
6 etransclem3.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
7 etransclem3.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
86, 7ffvelrnd 6321 . . . . . . . . . . 11 (𝜑 → (𝐶𝐽) ∈ (0...𝑁))
98elfzelzd 39025 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℤ)
104, 9zsubcld 11439 . . . . . . . . 9 (𝜑 → (𝑃 − (𝐶𝐽)) ∈ ℤ)
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℤ)
122, 5, 113jca 1240 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ))
139zred 11434 . . . . . . . . . 10 (𝜑 → (𝐶𝐽) ∈ ℝ)
1413adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ∈ ℝ)
155zred 11434 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 𝑃 ∈ ℝ)
16 simpr 477 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ¬ 𝑃 < (𝐶𝐽))
1714, 15, 16nltled 10139 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐶𝐽) ≤ 𝑃)
1815, 14subge0d 10569 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (0 ≤ (𝑃 − (𝐶𝐽)) ↔ (𝐶𝐽) ≤ 𝑃))
1917, 18mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → 0 ≤ (𝑃 − (𝐶𝐽)))
20 elfzle1 12294 . . . . . . . . . 10 ((𝐶𝐽) ∈ (0...𝑁) → 0 ≤ (𝐶𝐽))
218, 20syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶𝐽))
223nnred 10987 . . . . . . . . . 10 (𝜑𝑃 ∈ ℝ)
2322, 13subge02d 10571 . . . . . . . . 9 (𝜑 → (0 ≤ (𝐶𝐽) ↔ (𝑃 − (𝐶𝐽)) ≤ 𝑃))
2421, 23mpbid 222 . . . . . . . 8 (𝜑 → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2524adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ≤ 𝑃)
2612, 19, 25jca32 557 . . . . . 6 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
27 elfz2 12283 . . . . . 6 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) ↔ ((0 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℤ) ∧ (0 ≤ (𝑃 − (𝐶𝐽)) ∧ (𝑃 − (𝐶𝐽)) ≤ 𝑃)))
2826, 27sylibr 224 . . . . 5 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ (0...𝑃))
29 permnn 13061 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ (0...𝑃) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3028, 29syl 17 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℕ)
3130nnzd 11433 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) ∈ ℤ)
32 etransclem3.4 . . . . . 6 (𝜑𝐾 ∈ ℤ)
337elfzelzd 39025 . . . . . 6 (𝜑𝐽 ∈ ℤ)
3432, 33zsubcld 11439 . . . . 5 (𝜑 → (𝐾𝐽) ∈ ℤ)
3534adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝐾𝐽) ∈ ℤ)
36 elnn0z 11342 . . . . 5 ((𝑃 − (𝐶𝐽)) ∈ ℕ0 ↔ ((𝑃 − (𝐶𝐽)) ∈ ℤ ∧ 0 ≤ (𝑃 − (𝐶𝐽))))
3711, 19, 36sylanbrc 697 . . . 4 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (𝑃 − (𝐶𝐽)) ∈ ℕ0)
38 zexpcl 12823 . . . 4 (((𝐾𝐽) ∈ ℤ ∧ (𝑃 − (𝐶𝐽)) ∈ ℕ0) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
3935, 37, 38syl2anc 692 . . 3 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))) ∈ ℤ)
4031, 39zmulcld 11440 . 2 ((𝜑 ∧ ¬ 𝑃 < (𝐶𝐽)) → (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽)))) ∈ ℤ)
411, 40ifclda 4097 1 (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036  wcel 1987  ifcif 4063   class class class wbr 4618  wf 5848  cfv 5852  (class class class)co 6610  cr 9887  0cc0 9888   · cmul 9893   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  0cn0 11244  cz 11329  ...cfz 12276  cexp 12808  !cfa 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038
This theorem is referenced by:  etransclem24  39808  etransclem25  39809  etransclem26  39810  etransclem35  39819  etransclem37  39821
  Copyright terms: Public domain W3C validator