Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem34 Structured version   Visualization version   GIF version

Theorem etransclem34 39792
Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem34.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem34.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem34.p (𝜑𝑃 ∈ ℕ)
etransclem34.m (𝜑𝑀 ∈ ℕ0)
etransclem34.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
etransclem34.n (𝜑𝑁 ∈ ℕ0)
etransclem34.h 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
etransclem34.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
Assertion
Ref Expression
etransclem34 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝐶,𝑐,𝑘,𝑥   𝐹,𝑐   𝐻,𝑐,𝑘,𝑛,𝑥   𝑀,𝑐,𝑘,𝑥,𝑛   𝑁,𝑐,𝑘,𝑥,𝑛   𝑃,𝑘,𝑥   𝑆,𝑐,𝑘,𝑛,𝑥   𝑋,𝑐,𝑘,𝑥,𝑛   𝜑,𝑐,𝑘,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑘,𝑛)

Proof of Theorem etransclem34
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem34.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem34.a . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem34.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem34.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem34.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
6 etransclem34.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem34.h . . 3 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
8 etransclem34.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 39788 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))))
101, 2dvdmsscn 39457 . . 3 (𝜑𝑋 ⊆ ℂ)
118, 6etransclem16 39774 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
1210adantr 481 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑋 ⊆ ℂ)
136faccld 13011 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1413nncnd 10980 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1514adantr 481 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
16 fzfid 12712 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
17 fzssnn0 38997 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
18 ssrab2 3666 . . . . . . . . . . . . 13 {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁} ⊆ ((0...𝑁) ↑𝑚 (0...𝑀))
19 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
208, 6etransclem12 39770 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2120adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2219, 21eleqtrd 2700 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2318, 22sseldi 3581 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
24 elmapi 7823 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2625ffvelrnda 6315 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2717, 26sseldi 3581 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℕ0)
2827faccld 13011 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℕ)
2928nncnd 10980 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℂ)
3016, 29fprodcl 14607 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ∈ ℂ)
3128nnne0d 11009 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ≠ 0)
3216, 29, 31fprodn0 14634 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ≠ 0)
3315, 30, 32divcld 10745 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) ∈ ℂ)
34 ssid 3603 . . . . . 6 ℂ ⊆ ℂ
3534a1i 11 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ℂ ⊆ ℂ)
3612, 33, 35constcncfg 39387 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))) ∈ (𝑋cn→ℂ))
371ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
382ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
393ad2antrr 761 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
40 etransclem5 39763 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
417, 40eqtri 2643 . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
42 simpr 477 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀))
4337, 38, 39, 41, 42, 27etransclem20 39778 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
44433adant2 1078 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
45 simp2 1060 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → 𝑥𝑋)
4644, 45ffvelrnd 6316 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) ∈ ℂ)
4743feqmptd 6206 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)))
4837, 38, 39, 41, 42, 27etransclem22 39780 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) ∈ (𝑋cn→ℂ))
4947, 48eqeltrrd 2699 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5012, 16, 46, 49fprodcncf 39418 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5136, 50mulcncf 23123 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
5210, 11, 51fsumcncf 39394 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
539, 52eqeltrd 2698 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  wss 3555  ifcif 4058  {cpr 4150  cmpt 4673  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  cc 9878  cr 9879  0cc0 9880  1c1 9881   · cmul 9885  cmin 10210   / cdiv 10628  cn 10964  0cn0 11236  ...cfz 12268  cexp 12800  !cfa 13000  Σcsu 14350  cprod 14560  t crest 16002  TopOpenctopn 16003  fldccnfld 19665  cnccncf 22587   D𝑛 cdvn 23534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-prod 14561  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-dvn 23538
This theorem is referenced by:  etransclem40  39798
  Copyright terms: Public domain W3C validator