Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem34 Structured version   Visualization version   GIF version

Theorem etransclem34 42560
Description: The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem34.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem34.a (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem34.p (𝜑𝑃 ∈ ℕ)
etransclem34.m (𝜑𝑀 ∈ ℕ0)
etransclem34.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
etransclem34.n (𝜑𝑁 ∈ ℕ0)
etransclem34.h 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
etransclem34.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
Assertion
Ref Expression
etransclem34 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝐶,𝑐,𝑘,𝑥   𝐹,𝑐   𝐻,𝑐,𝑘,𝑛,𝑥   𝑀,𝑐,𝑘,𝑥,𝑛   𝑁,𝑐,𝑘,𝑥,𝑛   𝑃,𝑘,𝑥   𝑆,𝑐,𝑘,𝑛,𝑥   𝑋,𝑐,𝑘,𝑥,𝑛   𝜑,𝑐,𝑘,𝑥,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛,𝑐)   𝐹(𝑥,𝑘,𝑛)

Proof of Theorem etransclem34
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem34.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem34.a . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem34.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem34.m . . 3 (𝜑𝑀 ∈ ℕ0)
5 etransclem34.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))
6 etransclem34.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 etransclem34.h . . 3 𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
8 etransclem34.c . . 3 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})
91, 2, 3, 4, 5, 6, 7, 8etransclem30 42556 . 2 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))))
101, 2dvdmsscn 42228 . . 3 (𝜑𝑋 ⊆ ℂ)
118, 6etransclem16 42542 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
1210adantr 483 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑋 ⊆ ℂ)
136faccld 13647 . . . . . . . 8 (𝜑 → (!‘𝑁) ∈ ℕ)
1413nncnd 11656 . . . . . . 7 (𝜑 → (!‘𝑁) ∈ ℂ)
1514adantr 483 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) ∈ ℂ)
16 fzfid 13344 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
17 fzssnn0 41592 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
18 ssrab2 4058 . . . . . . . . . . . . 13 {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁} ⊆ ((0...𝑁) ↑m (0...𝑀))
19 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
208, 6etransclem12 42538 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2120adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2219, 21eleqtrd 2917 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑁})
2318, 22sseldi 3967 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)))
24 elmapi 8430 . . . . . . . . . . . 12 (𝑐 ∈ ((0...𝑁) ↑m (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2523, 24syl 17 . . . . . . . . . . 11 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
2625ffvelrnda 6853 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ (0...𝑁))
2717, 26sseldi 3967 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑐𝑘) ∈ ℕ0)
2827faccld 13647 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℕ)
2928nncnd 11656 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ∈ ℂ)
3016, 29fprodcl 15308 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ∈ ℂ)
3128nnne0d 11690 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (!‘(𝑐𝑘)) ≠ 0)
3216, 29, 31fprodn0 15335 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)) ≠ 0)
3315, 30, 32divcld 11418 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) ∈ ℂ)
34 ssid 3991 . . . . . 6 ℂ ⊆ ℂ
3534a1i 11 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ℂ ⊆ ℂ)
3612, 33, 35constcncfg 42161 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))) ∈ (𝑋cn→ℂ))
371ad2antrr 724 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑆 ∈ {ℝ, ℂ})
382ad2antrr 724 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
393ad2antrr 724 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑃 ∈ ℕ)
40 etransclem5 42531 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
417, 40eqtri 2846 . . . . . . . 8 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
42 simpr 487 . . . . . . . 8 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ (0...𝑀))
4337, 38, 39, 41, 42, 27etransclem20 42546 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
44433adant2 1127 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)):𝑋⟶ℂ)
45 simp2 1133 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → 𝑥𝑋)
4644, 45ffvelrnd 6854 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑥𝑋𝑘 ∈ (0...𝑀)) → (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥) ∈ ℂ)
4743feqmptd 6735 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) = (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)))
4837, 38, 39, 41, 42, 27etransclem22 42548 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘)) ∈ (𝑋cn→ℂ))
4947, 48eqeltrrd 2916 . . . . 5 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑋 ↦ (((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5012, 16, 46, 49fprodcncf 42191 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥)) ∈ (𝑋cn→ℂ))
5136, 50mulcncf 24049 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (𝑥𝑋 ↦ (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
5210, 11, 51fsumcncf 42168 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · ∏𝑘 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑘))‘(𝑐𝑘))‘𝑥))) ∈ (𝑋cn→ℂ))
539, 52eqeltrd 2915 1 (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  wss 3938  ifcif 4469  {cpr 4571  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  ...cfz 12895  cexp 13432  !cfa 13636  Σcsu 15044  cprod 15261  t crest 16696  TopOpenctopn 16697  fldccnfld 20547  cnccncf 23486   D𝑛 cdvn 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-prod 15262  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-dvn 24468
This theorem is referenced by:  etransclem40  42566
  Copyright terms: Public domain W3C validator