Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   GIF version

Theorem etransclem37 40991
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem37.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem37.p (𝜑𝑃 ∈ ℕ)
etransclem37.m (𝜑𝑀 ∈ ℕ0)
etransclem37.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem37.n (𝜑𝑁 ∈ ℕ0)
etransclem37.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem37.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem37.9 (𝜑𝐽 ∈ (0...𝑀))
etransclem37.j (𝜑𝐽𝑋)
Assertion
Ref Expression
etransclem37 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝐽(𝑛)   𝑋(𝑐)

Proof of Theorem etransclem37
Dummy variables 𝑘 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem37.n . . . 4 (𝜑𝑁 ∈ ℕ0)
31, 2etransclem16 40970 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
4 etransclem37.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
5 nnm1nn0 11526 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
76faccld 13265 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
87nnzd 11673 . . 3 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
91, 2etransclem12 40966 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
109eleq2d 2825 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (𝐶𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}))
1110biimpa 502 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 rabid 3254 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1312biimpi 206 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1413simprd 482 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1511, 14syl 17 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1615eqcomd 2766 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
1716fveq2d 6356 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
1817oveq1d 6828 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
19 nfcv 2902 . . . . . . 7 𝑗𝑐
20 fzfid 12966 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 nn0ex 11490 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ℕ0 ∈ V)
23 fzssnn0 40031 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
24 mapss 8066 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2522, 23, 24sylancl 697 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2613simpld 477 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2725, 26sseldd 3745 . . . . . . . 8 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2811, 27syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2919, 20, 28mccl 40333 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3018, 29eqeltrd 2839 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3130nnzd 11673 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
324adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑃 ∈ ℕ)
33 etransclem37.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3433adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ ℕ0)
35 elmapi 8045 . . . . . . 7 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3611, 26, 353syl 18 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
37 etransclem37.9 . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
3837elfzelzd 40028 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
3938adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ ℤ)
4032, 34, 36, 39etransclem10 40964 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
41 fzfid 12966 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (1...𝑀) ∈ Fin)
4232adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4336adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
44 0z 11580 . . . . . . . . . . 11 0 ∈ ℤ
45 fzp1ss 12585 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
4644, 45ax-mp 5 . . . . . . . . . 10 ((0 + 1)...𝑀) ⊆ (0...𝑀)
4746sseli 3740 . . . . . . . . 9 (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀))
48 1e0p1 11744 . . . . . . . . . 10 1 = (0 + 1)
4948oveq1i 6823 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
5047, 49eleq2s 2857 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5150adantl 473 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
5239adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
5342, 43, 51, 52etransclem3 40957 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5441, 53fprodzcl 14883 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5540, 54zmulcld 11680 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5631, 55zmulcld 11680 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
572adantr 472 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 ∈ ℕ0)
58 etransclem11 40965 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
591, 58eqtri 2782 . . . 4 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
60 simpr 479 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
6137adantr 472 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ (0...𝑀))
62 fveq2 6352 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
6362fveq2d 6356 . . . . . . 7 (𝑗 = 𝑘 → (!‘(𝑐𝑗)) = (!‘(𝑐𝑘)))
6463cbvprodv 14845 . . . . . 6 𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))
6564oveq2i 6824 . . . . 5 ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))
6662breq2d 4816 . . . . . . . 8 (𝑗 = 𝑘 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑘)))
6762oveq2d 6829 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝑐𝑘)))
6867fveq2d 6356 . . . . . . . . . 10 (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑘))))
6968oveq2d 6829 . . . . . . . . 9 (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))))
70 oveq2 6821 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
7170, 67oveq12d 6831 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))) = ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))
7269, 71oveq12d 6831 . . . . . . . 8 (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7366, 72ifbieq2d 4255 . . . . . . 7 (𝑗 = 𝑘 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7473cbvprodv 14845 . . . . . 6 𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7574oveq2i 6824 . . . . 5 (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7665, 75oveq12i 6825 . . . 4 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))))
7732, 34, 57, 59, 60, 61, 76etransclem28 40982 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
783, 8, 56, 77fsumdvds 15232 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
79 etransclem37.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
80 etransclem37.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
81 etransclem37.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
82 etransclem37.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
83 etransclem37.j . . 3 (𝜑𝐽𝑋)
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 40985 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
8578, 84breqtrrd 4832 1 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  wss 3715  ifcif 4230  {cpr 4323   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6813  𝑚 cmap 8023  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cmin 10458   / cdiv 10876  cn 11212  0cn0 11484  cz 11569  ...cfz 12519  cexp 13054  !cfa 13254  Σcsu 14615  cprod 14834  cdvds 15182  t crest 16283  TopOpenctopn 16284  fldccnfld 19948   D𝑛 cdvn 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-sum 14616  df-prod 14835  df-dvds 15183  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-dvn 23831
This theorem is referenced by:  etransclem44  40998  etransclem45  40999
  Copyright terms: Public domain W3C validator