Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   GIF version

Theorem etransclem47 38974
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem47.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem47.a 𝐴 = (coeff‘𝑄)
etransclem47.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem47.m 𝑀 = (deg‘𝑄)
etransclem47.p (𝜑𝑃 ∈ ℙ)
etransclem47.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem47.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem47.9 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
etransclem47.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem47.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem47.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem47 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑘,𝐾   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑄,𝑗   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑄(𝑥,𝑘)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘)

Proof of Theorem etransclem47
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
21a1i 11 . . . 4 (𝜑𝐾 = (𝐿 / (!‘(𝑃 − 1))))
3 etransclem47.q . . . . 5 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4 etransclem47.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
5 etransclem47.a . . . . 5 𝐴 = (coeff‘𝑄)
6 etransclem47.m . . . . 5 𝑀 = (deg‘𝑄)
7 ssid 3582 . . . . . 6 ℝ ⊆ ℝ
87a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℝ)
9 reelprrecn 9880 . . . . . 6 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 reopn 38241 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 eqid 2605 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312tgioo2 22342 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1411, 13eleqtri 2681 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
1514a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
16 etransclem47.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
17 prmnn 15168 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1816, 17syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
19 etransclem47.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
20 etransclem47.l . . . . 5 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
21 eqid 2605 . . . . 5 ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1))
22 fveq2 6084 . . . . . . 7 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2322sumeq2ad 38432 . . . . . 6 (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2423cbvmptv 4668 . . . . 5 (𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
25 negeq 10120 . . . . . . . . 9 (𝑧 = 𝑥 → -𝑧 = -𝑥)
2625oveq2d 6539 . . . . . . . 8 (𝑧 = 𝑥 → (e↑𝑐-𝑧) = (e↑𝑐-𝑥))
27 fveq2 6084 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))
2826, 27oveq12d 6541 . . . . . . 7 (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2928negeqd 10122 . . . . . 6 (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
3029cbvmptv 4668 . . . . 5 (𝑧 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
313, 4, 5, 6, 8, 10, 15, 18, 19, 20, 21, 24, 30etransclem46 38973 . . . 4 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
32 fzfid 12585 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
33 fzfid 12585 . . . . . . . 8 (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin)
34 xpfi 8089 . . . . . . . 8 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
3532, 33, 34syl2anc 690 . . . . . . 7 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
363eldifad 3547 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Poly‘ℤ))
37 0zd 11218 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
385coef2 23704 . . . . . . . . . . . 12 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
3936, 37, 38syl2anc 690 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℤ)
4039adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
41 xp1st 7062 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
42 elfznn0 12253 . . . . . . . . . . . 12 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
4443adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
4540, 44ffvelrnd 6249 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
4645zcnd 11311 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
479a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
4814a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4918adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
50 dgrcl 23706 . . . . . . . . . . . . 13 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝑄) ∈ ℕ0)
526, 51syl5eqel 2687 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
5352adantr 479 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
54 xp2nd 7063 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
55 elfznn0 12253 . . . . . . . . . . . 12 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
5756adantl 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
5847, 48, 49, 53, 19, 57etransclem33 38960 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
5944nn0red 11195 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
6058, 59ffvelrnd 6249 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
6146, 60mulcld 9912 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
6235, 61fsumcl 14253 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
63 nnm1nn0 11177 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6418, 63syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6564faccld 12884 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6665nncnd 10879 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6765nnne0d 10908 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6862, 66, 67divnegd 10659 . . . . 5 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
6968eqcomd 2611 . . . 4 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
702, 31, 693eqtrd 2643 . . 3 (𝜑𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
71 eqid 2605 . . . . 5 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
7218, 52, 19, 39, 71etransclem45 38972 . . . 4 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7372znegcld 11312 . . 3 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7470, 73eqeltrd 2683 . 2 (𝜑𝐾 ∈ ℤ)
751, 31syl5eq 2651 . . 3 (𝜑𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
7662, 66, 67divcld 10646 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℂ)
77 etransclem47.a0 . . . . . 6 (𝜑 → (𝐴‘0) ≠ 0)
78 etransclem47.ap . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
79 etransclem47.mp . . . . . 6 (𝜑 → (!‘𝑀) < 𝑃)
8039, 77, 52, 16, 78, 79, 19, 71etransclem44 38971 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8176, 80negne0d 10237 . . . 4 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8269, 81eqnetrd 2844 . . 3 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8375, 82eqnetrd 2844 . 2 (𝜑𝐾 ≠ 0)
84 eldifsni 4256 . . . . . 6 (𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑄 ≠ 0𝑝)
853, 84syl 17 . . . . 5 (𝜑𝑄 ≠ 0𝑝)
86 ere 14600 . . . . . . 7 e ∈ ℝ
8786recni 9904 . . . . . 6 e ∈ ℂ
8887a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
89 dgrnznn 23720 . . . . 5 (((𝑄 ∈ (Poly‘ℤ) ∧ 𝑄 ≠ 0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈ ℕ)
9036, 85, 88, 4, 89syl22anc 1318 . . . 4 (𝜑 → (deg‘𝑄) ∈ ℕ)
916, 90syl5eqel 2687 . . 3 (𝜑𝑀 ∈ ℕ)
92 etransclem47.9 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
9339, 20, 1, 18, 91, 19, 92etransclem23 38950 . 2 (𝜑 → (abs‘𝐾) < 1)
94 neeq1 2839 . . . 4 (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0))
95 fveq2 6084 . . . . 5 (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾))
9695breq1d 4583 . . . 4 (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1))
9794, 96anbi12d 742 . . 3 (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)))
9897rspcev 3277 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
9974, 83, 93, 98syl12anc 1315 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  wrex 2892  cdif 3532  wss 3535  {csn 4120  {cpr 4122   class class class wbr 4573  cmpt 4633   × cxp 5022  ran crn 5025  wf 5782  cfv 5786  (class class class)co 6523  1st c1st 7030  2nd c2nd 7031  Fincfn 7814  cc 9786  cr 9787  0cc0 9788  1c1 9789   + caddc 9791   · cmul 9793   < clt 9926  cmin 10113  -cneg 10114   / cdiv 10529  cn 10863  0cn0 11135  cz 11206  (,)cioo 11998  [,]cicc 12001  ...cfz 12148  cexp 12673  !cfa 12873  abscabs 13764  Σcsu 14206  cprod 14416  eceu 14574  cprime 15165  t crest 15846  TopOpenctopn 15847  topGenctg 15863  fldccnfld 19509  citg 23106  0𝑝c0p 23155   D𝑛 cdvn 23347  Polycply 23657  coeffccoe 23659  degcdgr 23660  𝑐ccxp 24019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cc 9113  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-disj 4544  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-ofr 6769  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-omul 7425  df-er 7602  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-acn 8624  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ioc 12003  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-fac 12874  df-bc 12903  df-hash 12931  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-sum 14207  df-prod 14417  df-ef 14579  df-e 14580  df-sin 14581  df-cos 14582  df-tan 14583  df-pi 14584  df-dvds 14764  df-gcd 14997  df-prm 15166  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-submnd 17101  df-mulg 17306  df-cntz 17515  df-cmn 17960  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-cmp 20938  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-ovol 22953  df-vol 22954  df-mbf 23107  df-itg1 23108  df-itg2 23109  df-ibl 23110  df-itg 23111  df-0p 23156  df-limc 23349  df-dv 23350  df-dvn 23351  df-ply 23661  df-coe 23663  df-dgr 23664  df-log 24020  df-cxp 24021
This theorem is referenced by:  etransclem48  38975
  Copyright terms: Public domain W3C validator