Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem8 Structured version   Visualization version   GIF version

Theorem etransclem8 40777
 Description: 𝐹 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem8.x (𝜑𝑋 ⊆ ℂ)
etransclem8.p (𝜑𝑃 ∈ ℕ)
etransclem8.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
Assertion
Ref Expression
etransclem8 (𝜑𝐹:𝑋⟶ℂ)
Distinct variable groups:   𝑗,𝑀   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑗)   𝐹(𝑥,𝑗)   𝑀(𝑥)

Proof of Theorem etransclem8
StepHypRef Expression
1 etransclem8.x . . . . 5 (𝜑𝑋 ⊆ ℂ)
21sselda 3636 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
3 etransclem8.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
43adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑃 ∈ ℕ)
5 nnm1nn0 11372 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . 4 ((𝜑𝑥𝑋) → (𝑃 − 1) ∈ ℕ0)
72, 6expcld 13048 . . 3 ((𝜑𝑥𝑋) → (𝑥↑(𝑃 − 1)) ∈ ℂ)
8 fzfid 12812 . . . 4 ((𝜑𝑥𝑋) → (1...𝑀) ∈ Fin)
92adantr 480 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑗 ∈ (1...𝑀)) → 𝑥 ∈ ℂ)
10 elfzelz 12380 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℤ)
1110zcnd 11521 . . . . . . 7 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ ℂ)
1211adantl 481 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ ℂ)
139, 12subcld 10430 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗 ∈ (1...𝑀)) → (𝑥𝑗) ∈ ℂ)
143nnnn0d 11389 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
1514ad2antrr 762 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ0)
1613, 15expcld 13048 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑗 ∈ (1...𝑀)) → ((𝑥𝑗)↑𝑃) ∈ ℂ)
178, 16fprodcl 14726 . . 3 ((𝜑𝑥𝑋) → ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃) ∈ ℂ)
187, 17mulcld 10098 . 2 ((𝜑𝑥𝑋) → ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)) ∈ ℂ)
19 etransclem8.f . 2 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2018, 19fmptd 6425 1 (𝜑𝐹:𝑋⟶ℂ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ⊆ wss 3607   ↦ cmpt 4762  ⟶wf 5922  (class class class)co 6690  ℂcc 9972  1c1 9975   · cmul 9979   − cmin 10304  ℕcn 11058  ℕ0cn0 11330  ...cfz 12364  ↑cexp 12900  ∏cprod 14679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-prod 14680 This theorem is referenced by:  etransclem18  40787  etransclem23  40792  etransclem46  40815
 Copyright terms: Public domain W3C validator