Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eu2ndop1stv Structured version   Visualization version   GIF version

Theorem eu2ndop1stv 43323
Description: If there is a unique second component in an ordered pair contained in a given set, the first component must be a set. (Contributed by Alexander van der Vekens, 29-Nov-2017.)
Assertion
Ref Expression
eu2ndop1stv (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉

Proof of Theorem eu2ndop1stv
StepHypRef Expression
1 euex 2658 . 2 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 → ∃𝑦𝐴, 𝑦⟩ ∈ 𝑉)
2 nfeu1 2670 . . . 4 𝑦∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉
3 nfcv 2977 . . . . 5 𝑦𝐴
43nfel1 2994 . . . 4 𝑦 𝐴 ∈ V
52, 4nfim 1893 . . 3 𝑦(∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
6 opprc1 4826 . . . . . . . . 9 𝐴 ∈ V → ⟨𝐴, 𝑦⟩ = ∅)
76eleq1d 2897 . . . . . . . 8 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∅ ∈ 𝑉))
8 ax-5 1907 . . . . . . . . 9 (∅ ∈ 𝑉 → ∀𝑦∅ ∈ 𝑉)
9 alneu 43322 . . . . . . . . 9 (∀𝑦∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
108, 9syl 17 . . . . . . . 8 (∅ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉)
117, 10syl6bi 255 . . . . . . 7 𝐴 ∈ V → (⟨𝐴, 𝑦⟩ ∈ 𝑉 → ¬ ∃!𝑦∅ ∈ 𝑉))
1211impcom 410 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦∅ ∈ 𝑉)
137eubidv 2668 . . . . . . . 8 𝐴 ∈ V → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ∃!𝑦∅ ∈ 𝑉))
1413notbid 320 . . . . . . 7 𝐴 ∈ V → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1514adantl 484 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → (¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉 ↔ ¬ ∃!𝑦∅ ∈ 𝑉))
1612, 15mpbird 259 . . . . 5 ((⟨𝐴, 𝑦⟩ ∈ 𝑉 ∧ ¬ 𝐴 ∈ V) → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉)
1716ex 415 . . . 4 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (¬ 𝐴 ∈ V → ¬ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉))
1817con4d 115 . . 3 (⟨𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
195, 18exlimi 2213 . 2 (∃𝑦𝐴, 𝑦⟩ ∈ 𝑉 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V))
201, 19mpcom 38 1 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝑉𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531  wex 1776  wcel 2110  ∃!weu 2649  Vcvv 3494  c0 4290  cop 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5209  ax-pow 5265
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-dif 3938  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-op 4573
This theorem is referenced by:  afveu  43351  tz6.12-afv  43371  tz6.12-afv2  43438
  Copyright terms: Public domain W3C validator