MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq Structured version   Visualization version   GIF version

Theorem eueq 3702
Description: A class is a set if and only if there exists a unique set equal to it. (Contributed by NM, 25-Nov-1994.) Shorten combined proofs of moeq 3701 and eueq 3702. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
StepHypRef Expression
1 moeq 3701 . . 3 ∃*𝑥 𝑥 = 𝐴
21biantru 532 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
3 isset 3509 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 df-eu 2653 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃*𝑥 𝑥 = 𝐴))
52, 3, 43bitr4i 305 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  ∃*wmo 2619  ∃!weu 2652  Vcvv 3497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1780  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3499
This theorem is referenced by:  eueqi  3703  reuhypd  5323  mptfnf  6486  mptfng  6490  upxp  22234  iotasbc  40757  sprval  43648
  Copyright terms: Public domain W3C validator