MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euexALT Structured version   Visualization version   GIF version

Theorem euexALT 2498
Description: Alternate proof of euex 2481. Shorter but uses more axioms. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
euexALT (∃!𝑥𝜑 → ∃𝑥𝜑)

Proof of Theorem euexALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1829 . . 3 𝑦𝜑
21eu1 2497 . 2 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
3 exsimpl 1782 . 2 (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) → ∃𝑥𝜑)
42, 3sylbi 205 1 (∃!𝑥𝜑 → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1472  wex 1694  [wsb 1866  ∃!weu 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator