Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   GIF version

Theorem eulerpartlemmf 31532
Description: Lemma for eulerpart 31539. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemmf (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 15782 . . . . 5 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
2 f1of 6608 . . . . 5 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin))
31, 2ax-mp 5 . . . 4 (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin)
4 eulerpart.p . . . . . . . . 9 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . 9 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . 9 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . 9 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . 9 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . 9 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . 9 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 31526 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413biimpi 217 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 ∈ (ℕ0m ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1514simp1d 1134 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0m ℕ))
16 nn0ex 11891 . . . . . . 7 0 ∈ V
17 nnex 11632 . . . . . . 7 ℕ ∈ V
1816, 17elmap 8424 . . . . . 6 (𝐴 ∈ (ℕ0m ℕ) ↔ 𝐴:ℕ⟶ℕ0)
1915, 18sylib 219 . . . . 5 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
20 ssrab2 4053 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
217, 20eqsstri 3998 . . . . 5 𝐽 ⊆ ℕ
22 fssres 6537 . . . . 5 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
2319, 21, 22sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
24 fco2 6526 . . . 4 (((bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin) ∧ (𝐴𝐽):𝐽⟶ℕ0) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
253, 23, 24sylancr 587 . . 3 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
2616pwex 5272 . . . . 5 𝒫 ℕ0 ∈ V
2726inex1 5212 . . . 4 (𝒫 ℕ0 ∩ Fin) ∈ V
2817, 21ssexi 5217 . . . 4 𝐽 ∈ V
2927, 28elmap 8424 . . 3 ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ↔ (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
3025, 29sylibr 235 . 2 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽))
3114simp2d 1135 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ∈ Fin)
32 0nn0 11900 . . . . . . . . 9 0 ∈ ℕ0
33 suppimacnv 7830 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 0 ∈ ℕ0) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
3432, 33mpan2 687 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
35 frnsuppeq 7831 . . . . . . . . . 10 ((ℕ ∈ V ∧ 0 ∈ ℕ0) → (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0}))))
3617, 32, 35mp2an 688 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3719, 36syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3834, 37eqtr3d 2855 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) = (𝐴 “ (ℕ0 ∖ {0})))
3938eleq1d 2894 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin))
40 dfn2 11898 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
4140imaeq2i 5920 . . . . . . 7 (𝐴 “ ℕ) = (𝐴 “ (ℕ0 ∖ {0}))
4241eleq1i 2900 . . . . . 6 ((𝐴 “ ℕ) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin)
4339, 42syl6bbr 290 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
4431, 43mpbird 258 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) ∈ Fin)
45 resss 5871 . . . . 5 (𝐴𝐽) ⊆ 𝐴
46 cnvss 5736 . . . . 5 ((𝐴𝐽) ⊆ 𝐴(𝐴𝐽) ⊆ 𝐴)
47 imass1 5957 . . . . 5 ((𝐴𝐽) ⊆ 𝐴 → ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0})))
4845, 46, 47mp2b 10 . . . 4 ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))
49 ssfi 8726 . . . 4 (((𝐴 “ (V ∖ {0})) ∈ Fin ∧ ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
5044, 48, 49sylancl 586 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
51 cnvco 5749 . . . . . 6 (bits ∘ (𝐴𝐽)) = ((𝐴𝐽) ∘ bits)
5251imaeq1i 5919 . . . . 5 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = (((𝐴𝐽) ∘ bits) “ (V ∖ {∅}))
53 imaco 6097 . . . . 5 (((𝐴𝐽) ∘ bits) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
5452, 53eqtri 2841 . . . 4 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
55 ffun 6510 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
56 funres 6390 . . . . . 6 (Fun 𝐴 → Fun (𝐴𝐽))
5719, 55, 563syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
58 ssv 3988 . . . . . . 7 (bits “ V) ⊆ V
59 ssdif 4113 . . . . . . 7 ((bits “ V) ⊆ V → ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅})))
6058, 59ax-mp 5 . . . . . 6 ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅}))
61 bitsf 15764 . . . . . . 7 bits:ℤ⟶𝒫 ℕ0
62 ffun 6510 . . . . . . 7 (bits:ℤ⟶𝒫 ℕ0 → Fun bits)
63 difpreima 6827 . . . . . . 7 (Fun bits → (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅})))
6461, 62, 63mp2b 10 . . . . . 6 (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅}))
65 bitsf1 15783 . . . . . . . . 9 bits:ℤ–1-1→𝒫 ℕ0
66 0z 11980 . . . . . . . . . 10 0 ∈ ℤ
67 snssi 4733 . . . . . . . . . 10 (0 ∈ ℤ → {0} ⊆ ℤ)
6866, 67ax-mp 5 . . . . . . . . 9 {0} ⊆ ℤ
69 f1imacnv 6624 . . . . . . . . 9 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ {0} ⊆ ℤ) → (bits “ (bits “ {0})) = {0})
7065, 68, 69mp2an 688 . . . . . . . 8 (bits “ (bits “ {0})) = {0}
71 ffn 6507 . . . . . . . . . . . 12 (bits:ℤ⟶𝒫 ℕ0 → bits Fn ℤ)
7261, 71ax-mp 5 . . . . . . . . . . 11 bits Fn ℤ
73 fnsnfv 6736 . . . . . . . . . . 11 ((bits Fn ℤ ∧ 0 ∈ ℤ) → {(bits‘0)} = (bits “ {0}))
7472, 66, 73mp2an 688 . . . . . . . . . 10 {(bits‘0)} = (bits “ {0})
75 0bits 15776 . . . . . . . . . . 11 (bits‘0) = ∅
7675sneqi 4568 . . . . . . . . . 10 {(bits‘0)} = {∅}
7774, 76eqtr3i 2843 . . . . . . . . 9 (bits “ {0}) = {∅}
7877imaeq2i 5920 . . . . . . . 8 (bits “ (bits “ {0})) = (bits “ {∅})
7970, 78eqtr3i 2843 . . . . . . 7 {0} = (bits “ {∅})
8079difeq2i 4093 . . . . . 6 (V ∖ {0}) = (V ∖ (bits “ {∅}))
8160, 64, 803sstr4i 4007 . . . . 5 (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})
82 sspreima 30320 . . . . 5 ((Fun (𝐴𝐽) ∧ (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8357, 81, 82sylancl 586 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8454, 83eqsstrid 4012 . . 3 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
85 ssfi 8726 . . 3 ((((𝐴𝐽) “ (V ∖ {0})) ∈ Fin ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0}))) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
8650, 84, 85syl2anc 584 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
87 oveq1 7152 . . . . 5 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟 supp ∅) = ((bits ∘ (𝐴𝐽)) supp ∅))
8887eleq1d 2894 . . . 4 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑟 supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
8988, 9elrab2 3680 . . 3 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
90 zex 11978 . . . . . 6 ℤ ∈ V
91 fex 6980 . . . . . 6 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
9261, 90, 91mp2an 688 . . . . 5 bits ∈ V
93 resexg 5891 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽) ∈ V)
94 coexg 7623 . . . . 5 ((bits ∈ V ∧ (𝐴𝐽) ∈ V) → (bits ∘ (𝐴𝐽)) ∈ V)
9592, 93, 94sylancr 587 . . . 4 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ V)
96 0ex 5202 . . . . . . 7 ∅ ∈ V
97 suppimacnv 7830 . . . . . . 7 (((bits ∘ (𝐴𝐽)) ∈ V ∧ ∅ ∈ V) → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9896, 97mpan2 687 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ V → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9998eleq1d 2894 . . . . 5 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin))
10099anbi2d 628 . . . 4 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10195, 100syl 17 . . 3 (𝐴 ∈ (𝑇𝑅) → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10289, 101syl5bb 284 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10330, 86, 102mpbir2and 709 1 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wral 3135  {crab 3139  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   class class class wbr 5057  {copab 5119  cmpt 5137  ccnv 5547  cres 5550  cima 5551  ccom 5552  Fun wfun 6342   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cmpo 7147   supp csupp 7819  m cmap 8395  Fincfn 8497  0cc0 10525  1c1 10526   · cmul 10530  cle 10664  cn 11626  2c2 11680  0cn0 11885  cz 11969  cexp 13417  Σcsu 15030  cdvds 15595  bitscbits 15756  𝟭cind 31168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-sum 15031  df-dvds 15596  df-bits 15759
This theorem is referenced by:  eulerpartlemgvv  31533  eulerpartlemgf  31536
  Copyright terms: Public domain W3C validator