MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerthlem1 Structured version   Visualization version   GIF version

Theorem eulerthlem1 16120
Description: Lemma for eulerth 16122. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.3 𝑇 = (1...(ϕ‘𝑁))
eulerth.4 (𝜑𝐹:𝑇1-1-onto𝑆)
eulerth.5 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
Assertion
Ref Expression
eulerthlem1 (𝜑𝐺:𝑇𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerth.1 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp2d 1139 . . . . . 6 (𝜑𝐴 ∈ ℤ)
32adantr 483 . . . . 5 ((𝜑𝑥𝑇) → 𝐴 ∈ ℤ)
4 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:𝑇1-1-onto𝑆)
5 f1of 6617 . . . . . . . . . 10 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑇𝑆)
76ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ 𝑆)
8 oveq1 7165 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
98eqeq1d 2825 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
10 eulerth.2 . . . . . . . . 9 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
119, 10elrab2 3685 . . . . . . . 8 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
127, 11sylib 220 . . . . . . 7 ((𝜑𝑥𝑇) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
1312simpld 497 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (0..^𝑁))
14 elfzoelz 13041 . . . . . 6 ((𝐹𝑥) ∈ (0..^𝑁) → (𝐹𝑥) ∈ ℤ)
1513, 14syl 17 . . . . 5 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ℤ)
163, 15zmulcld 12096 . . . 4 ((𝜑𝑥𝑇) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
171simp1d 1138 . . . . 5 (𝜑𝑁 ∈ ℕ)
1817adantr 483 . . . 4 ((𝜑𝑥𝑇) → 𝑁 ∈ ℕ)
19 zmodfzo 13265 . . . 4 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
2016, 18, 19syl2anc 586 . . 3 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
21 modgcd 15882 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2216, 18, 21syl2anc 586 . . . 4 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2317nnzd 12089 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2423adantr 483 . . . . 5 ((𝜑𝑥𝑇) → 𝑁 ∈ ℤ)
25 gcdcom 15864 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
2616, 24, 25syl2anc 586 . . . 4 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
27 gcdcom 15864 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
2823, 2, 27syl2anc 586 . . . . . . 7 (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
291simp3d 1140 . . . . . . 7 (𝜑 → (𝐴 gcd 𝑁) = 1)
3028, 29eqtrd 2858 . . . . . 6 (𝜑 → (𝑁 gcd 𝐴) = 1)
3130adantr 483 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd 𝐴) = 1)
32 gcdcom 15864 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3324, 15, 32syl2anc 586 . . . . . 6 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3412simprd 498 . . . . . 6 ((𝜑𝑥𝑇) → ((𝐹𝑥) gcd 𝑁) = 1)
3533, 34eqtrd 2858 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = 1)
36 rpmul 16005 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3724, 3, 15, 36syl3anc 1367 . . . . 5 ((𝜑𝑥𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3831, 35, 37mp2and 697 . . . 4 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
3922, 26, 383eqtrd 2862 . . 3 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
40 oveq1 7165 . . . . 5 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
4140eqeq1d 2825 . . . 4 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4241, 10elrab2 3685 . . 3 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4320, 39, 42sylanbrc 585 . 2 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
44 eulerth.5 . 2 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
4543, 44fmptd 6880 1 (𝜑𝐺:𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  cmpt 5148  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540   · cmul 10544  cn 11640  cz 11984  ...cfz 12895  ..^cfzo 13036   mod cmo 13240   gcd cgcd 15845  ϕcphi 16103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15846
This theorem is referenced by:  eulerthlem2  16121
  Copyright terms: Public domain W3C validator