MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euorv Structured version   Visualization version   GIF version

Theorem euorv 2651
Description: Introduce a disjunct into a uniqueness quantifier. (Contributed by NM, 23-Mar-1995.)
Assertion
Ref Expression
euorv ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem euorv
StepHypRef Expression
1 nfv 1992 . 2 𝑥𝜑
21euor 2650 1 ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  ∃!weu 2607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-12 2196
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-eu 2611
This theorem is referenced by:  eueq2  3521
  Copyright terms: Public domain W3C validator