Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupick Structured version   Visualization version   GIF version

Theorem eupick 2674
 Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
eupick ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem eupick
StepHypRef Expression
1 eumo 2636 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 mopick 2673 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
31, 2sylan 489 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∃wex 1853  ∃!weu 2607  ∃*wmo 2608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-12 2196 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612 This theorem is referenced by:  eupicka  2675  eupickb  2676  reupick  4054  reupick3  4055  eusv2nf  5013  reusv2lem3  5020  copsexg  5104  funssres  6091  oprabid  6841  txcn  21651  isch3  28428  bnj849  31323  iotasbc  39140
 Copyright terms: Public domain W3C validator