MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth0 Structured version   Visualization version   GIF version

Theorem eupth0 27995
Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
eupth0 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})

Proof of Theorem eupth0
StepHypRef Expression
1 eqidd 2824 . . . 4 (𝐴𝑉 → {⟨0, 𝐴⟩} = {⟨0, 𝐴⟩})
2 eupth0.v . . . . 5 𝑉 = (Vtx‘𝐺)
32is0wlk 27898 . . . 4 (({⟨0, 𝐴⟩} = {⟨0, 𝐴⟩} ∧ 𝐴𝑉) → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
41, 3mpancom 686 . . 3 (𝐴𝑉 → ∅(Walks‘𝐺){⟨0, 𝐴⟩})
5 f1o0 6653 . . . 4 ∅:∅–1-1-onto→∅
6 eqidd 2824 . . . . 5 (𝐼 = ∅ → ∅ = ∅)
7 hash0 13731 . . . . . . . 8 (♯‘∅) = 0
87oveq2i 7169 . . . . . . 7 (0..^(♯‘∅)) = (0..^0)
9 fzo0 13064 . . . . . . 7 (0..^0) = ∅
108, 9eqtri 2846 . . . . . 6 (0..^(♯‘∅)) = ∅
1110a1i 11 . . . . 5 (𝐼 = ∅ → (0..^(♯‘∅)) = ∅)
12 dmeq 5774 . . . . . 6 (𝐼 = ∅ → dom 𝐼 = dom ∅)
13 dm0 5792 . . . . . 6 dom ∅ = ∅
1412, 13syl6eq 2874 . . . . 5 (𝐼 = ∅ → dom 𝐼 = ∅)
156, 11, 14f1oeq123d 6612 . . . 4 (𝐼 = ∅ → (∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼 ↔ ∅:∅–1-1-onto→∅))
165, 15mpbiri 260 . . 3 (𝐼 = ∅ → ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼)
174, 16anim12i 614 . 2 ((𝐴𝑉𝐼 = ∅) → (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
18 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
1918iseupthf1o 27983 . 2 (∅(EulerPaths‘𝐺){⟨0, 𝐴⟩} ↔ (∅(Walks‘𝐺){⟨0, 𝐴⟩} ∧ ∅:(0..^(♯‘∅))–1-1-onto→dom 𝐼))
2017, 19sylibr 236 1 ((𝐴𝑉𝐼 = ∅) → ∅(EulerPaths‘𝐺){⟨0, 𝐴⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  c0 4293  {csn 4569  cop 4575   class class class wbr 5068  dom cdm 5557  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  0cc0 10539  ..^cfzo 13036  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  Walkscwlks 27380  EulerPathsceupth 27978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-wlks 27383  df-trls 27476  df-eupth 27979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator