![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupth0 | Structured version Visualization version GIF version |
Description: There is an Eulerian path on an empty graph, i.e. a graph with at least one vertex, but without an edge. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 5-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
eupth0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupth0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
eupth0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → ∅(EulerPaths‘𝐺){〈0, 𝐴〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2652 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {〈0, 𝐴〉} = {〈0, 𝐴〉}) | |
2 | eupth0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | is0wlk 27095 | . . . 4 ⊢ (({〈0, 𝐴〉} = {〈0, 𝐴〉} ∧ 𝐴 ∈ 𝑉) → ∅(Walks‘𝐺){〈0, 𝐴〉}) |
4 | 1, 3 | mpancom 704 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∅(Walks‘𝐺){〈0, 𝐴〉}) |
5 | f1o0 6211 | . . . 4 ⊢ ∅:∅–1-1-onto→∅ | |
6 | eqidd 2652 | . . . . 5 ⊢ (𝐼 = ∅ → ∅ = ∅) | |
7 | hash0 13196 | . . . . . . . 8 ⊢ (#‘∅) = 0 | |
8 | 7 | oveq2i 6701 | . . . . . . 7 ⊢ (0..^(#‘∅)) = (0..^0) |
9 | fzo0 12531 | . . . . . . 7 ⊢ (0..^0) = ∅ | |
10 | 8, 9 | eqtri 2673 | . . . . . 6 ⊢ (0..^(#‘∅)) = ∅ |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝐼 = ∅ → (0..^(#‘∅)) = ∅) |
12 | dmeq 5356 | . . . . . 6 ⊢ (𝐼 = ∅ → dom 𝐼 = dom ∅) | |
13 | dm0 5371 | . . . . . 6 ⊢ dom ∅ = ∅ | |
14 | 12, 13 | syl6eq 2701 | . . . . 5 ⊢ (𝐼 = ∅ → dom 𝐼 = ∅) |
15 | 6, 11, 14 | f1oeq123d 6171 | . . . 4 ⊢ (𝐼 = ∅ → (∅:(0..^(#‘∅))–1-1-onto→dom 𝐼 ↔ ∅:∅–1-1-onto→∅)) |
16 | 5, 15 | mpbiri 248 | . . 3 ⊢ (𝐼 = ∅ → ∅:(0..^(#‘∅))–1-1-onto→dom 𝐼) |
17 | 4, 16 | anim12i 589 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → (∅(Walks‘𝐺){〈0, 𝐴〉} ∧ ∅:(0..^(#‘∅))–1-1-onto→dom 𝐼)) |
18 | eupth0.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
19 | 18 | iseupthf1o 27180 | . 2 ⊢ (∅(EulerPaths‘𝐺){〈0, 𝐴〉} ↔ (∅(Walks‘𝐺){〈0, 𝐴〉} ∧ ∅:(0..^(#‘∅))–1-1-onto→dom 𝐼)) |
20 | 17, 19 | sylibr 224 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐼 = ∅) → ∅(EulerPaths‘𝐺){〈0, 𝐴〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∅c0 3948 {csn 4210 〈cop 4216 class class class wbr 4685 dom cdm 5143 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ..^cfzo 12504 #chash 13157 Vtxcvtx 25919 iEdgciedg 25920 Walkscwlks 26548 EulerPathsceupth 27175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-wlks 26551 df-trls 26645 df-eupth 27176 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |