MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   GIF version

Theorem eupth2eucrct 27340
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 which may not be an (Eulerian) circuit to become an Eulerian circuit 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵 ∈ V)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
eupth2eucrct.c (𝜑𝐶 = (𝑃‘0))
Assertion
Ref Expression
eupth2eucrct (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))

Proof of Theorem eupth2eucrct
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵 ∈ V)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . 3 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
10 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
11 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 eupthp1.u . . 3 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
13 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 eupthp1.s . . 3 (Vtx‘𝑆) = 𝑉
16 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 27339 . 2 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
18 simpr 479 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄)
19 eupthistrl 27334 . . . . 5 (𝐻(EulerPaths‘𝑆)𝑄𝐻(Trails‘𝑆)𝑄)
2019adantl 473 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄)
21 fveq2 6340 . . . . . . . 8 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
22 fveq2 6340 . . . . . . . 8 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2321, 22eqeq12d 2763 . . . . . . 7 (𝑘 = 0 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄‘0) = (𝑃‘0)))
24 eupthiswlk 27335 . . . . . . . . 9 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
258, 24syl 17 . . . . . . . 8 (𝜑𝐹(Walks‘𝐺)𝑃)
2612a1i 11 . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2715a1i 11 . . . . . . . 8 (𝜑 → (Vtx‘𝑆) = 𝑉)
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 26755 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
292wlkf 26691 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
3024, 29syl 17 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 lencl 13481 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼 → (♯‘𝐹) ∈ ℕ0)
329eleq1i 2818 . . . . . . . . . 10 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
33 0elfz 12601 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3432, 33sylbir 225 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...𝑁))
3531, 34syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁))
368, 30, 353syl 18 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3723, 28, 36rspcdva 3443 . . . . . 6 (𝜑 → (𝑄‘0) = (𝑃‘0))
3837adantr 472 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0))
39 eupth2eucrct.c . . . . . . 7 (𝜑𝐶 = (𝑃‘0))
4039eqcomd 2754 . . . . . 6 (𝜑 → (𝑃‘0) = 𝐶)
4140adantr 472 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶)
4214a1i 11 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
4313fveq2i 6343 . . . . . . . . 9 (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
4443a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
45 wrdfin 13480 . . . . . . . . . . . 12 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
4629, 45syl 17 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Fin)
478, 24, 463syl 18 . . . . . . . . . 10 (𝜑𝐹 ∈ Fin)
4847adantr 472 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin)
49 snfi 8191 . . . . . . . . . 10 {⟨𝑁, 𝐵⟩} ∈ Fin
5049a1i 11 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → {⟨𝑁, 𝐵⟩} ∈ Fin)
51 wrddm 13469 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(♯‘𝐹)))
528, 30, 513syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (0..^(♯‘𝐹)))
53 fzonel 12648 . . . . . . . . . . . . . . . 16 ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹))
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
559eleq1i 2818 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ (0..^(♯‘𝐹)))
5654, 55sylnibr 318 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ∈ (0..^(♯‘𝐹)))
57 eleq2 2816 . . . . . . . . . . . . . . 15 (dom 𝐹 = (0..^(♯‘𝐹)) → (𝑁 ∈ dom 𝐹𝑁 ∈ (0..^(♯‘𝐹))))
5857notbid 307 . . . . . . . . . . . . . 14 (dom 𝐹 = (0..^(♯‘𝐹)) → (¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ (0..^(♯‘𝐹))))
5956, 58syl5ibrcom 237 . . . . . . . . . . . . 13 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹))
60 fvex 6350 . . . . . . . . . . . . . . . 16 (♯‘𝐹) ∈ V
619, 60eqeltri 2823 . . . . . . . . . . . . . . 15 𝑁 ∈ V
6261a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ V)
6362, 5opeldmd 5470 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ dom 𝐹))
6459, 63nsyld 154 . . . . . . . . . . . 12 (𝜑 → (dom 𝐹 = (0..^(♯‘𝐹)) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
6552, 64mpd 15 . . . . . . . . . . 11 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6665adantr 472 . . . . . . . . . 10 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
67 disjsn 4378 . . . . . . . . . 10 ((𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6866, 67sylibr 224 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅)
69 hashun 13334 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ {⟨𝑁, 𝐵⟩} ∈ Fin ∧ (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
7048, 50, 68, 69syl3anc 1463 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})))
719eqcomi 2757 . . . . . . . . . 10 (♯‘𝐹) = 𝑁
72 opex 5069 . . . . . . . . . . 11 𝑁, 𝐵⟩ ∈ V
73 hashsng 13322 . . . . . . . . . . 11 (⟨𝑁, 𝐵⟩ ∈ V → (♯‘{⟨𝑁, 𝐵⟩}) = 1)
7472, 73ax-mp 5 . . . . . . . . . 10 (♯‘{⟨𝑁, 𝐵⟩}) = 1
7571, 74oveq12i 6813 . . . . . . . . 9 ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1)
7675a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((♯‘𝐹) + (♯‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1))
7744, 70, 763eqtrd 2786 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (♯‘𝐻) = (𝑁 + 1))
7842, 77fveq12d 6346 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(♯‘𝐻)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)))
79 ovexd 6831 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ V)
801, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 26751 . . . . . . . . 9 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
8179, 6, 803jca 1403 . . . . . . . 8 (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
8281adantr 472 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
83 fsnunfv 6605 . . . . . . 7 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8482, 83syl 17 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8578, 84eqtr2d 2783 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(♯‘𝐻)))
8638, 41, 853eqtrd 2786 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
87 iscrct 26867 . . . 4 (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
8820, 86, 87sylanbrc 701 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄)
8918, 88jca 555 . 2 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
9017, 89mpdan 705 1 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  Vcvv 3328  cun 3701  cin 3702  wss 3703  c0 4046  {csn 4309  {cpr 4311  cop 4315   class class class wbr 4792  dom cdm 5254  Fun wfun 6031  cfv 6037  (class class class)co 6801  Fincfn 8109  0cc0 10099  1c1 10100   + caddc 10102  0cn0 11455  ...cfz 12490  ..^cfzo 12630  chash 13282  Word cword 13448  Vtxcvtx 26044  iEdgciedg 26045  Edgcedg 26109  Walkscwlks 26673  Trailsctrls 26768  Circuitsccrcts 26861  EulerPathsceupth 27320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-fzo 12631  df-hash 13283  df-word 13456  df-wlks 26676  df-trls 26770  df-crcts 26863  df-eupth 27321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator