MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3 27942
Description: Lemma for eupth2 27945. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypotheses
Ref Expression
eupth2.v 𝑉 = (Vtx‘𝐺)
eupth2.i 𝐼 = (iEdg‘𝐺)
eupth2.g (𝜑𝐺 ∈ UPGraph)
eupth2.f (𝜑 → Fun 𝐼)
eupth2.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupth2.h 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
eupth2.x 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
eupth2.n (𝜑𝑁 ∈ ℕ0)
eupth2.l (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
eupth2.u (𝜑𝑈𝑉)
eupth2.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
Assertion
Ref Expression
eupth2lem3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑈   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem eupth2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupth2.v . 2 𝑉 = (Vtx‘𝐺)
2 eupth2.i . 2 𝐼 = (iEdg‘𝐺)
3 eupth2.f . 2 (𝜑 → Fun 𝐼)
4 eupth2.n . . 3 (𝜑𝑁 ∈ ℕ0)
5 eupth2.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
6 eupthiswlk 27918 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
7 wlkcl 27324 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
85, 6, 73syl 18 . . 3 (𝜑 → (♯‘𝐹) ∈ ℕ0)
9 eupth2.l . . 3 (𝜑 → (𝑁 + 1) ≤ (♯‘𝐹))
10 nn0p1elfzo 13068 . . 3 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ (𝑁 + 1) ≤ (♯‘𝐹)) → 𝑁 ∈ (0..^(♯‘𝐹)))
114, 8, 9, 10syl3anc 1363 . 2 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
12 eupth2.u . 2 (𝜑𝑈𝑉)
13 eupthistrl 27917 . . 3 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
145, 13syl 17 . 2 (𝜑𝐹(Trails‘𝐺)𝑃)
15 eupth2.h . . . . 5 𝐻 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩
1615fveq2i 6666 . . . 4 (Vtx‘𝐻) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
171fvexi 6677 . . . . 5 𝑉 ∈ V
182fvexi 6677 . . . . . 6 𝐼 ∈ V
1918resex 5892 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^𝑁))) ∈ V
2017, 19opvtxfvi 26721 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = 𝑉
2116, 20eqtri 2841 . . 3 (Vtx‘𝐻) = 𝑉
2221a1i 11 . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
23 snex 5322 . . . 4 {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} ∈ V
2417, 23opvtxfvi 26721 . . 3 (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉
2524a1i 11 . 2 (𝜑 → (Vtx‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = 𝑉)
26 eupth2.x . . . . 5 𝑋 = ⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩
2726fveq2i 6666 . . . 4 (Vtx‘𝑋) = (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
2818resex 5892 . . . . 5 (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) ∈ V
2917, 28opvtxfvi 26721 . . . 4 (Vtx‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = 𝑉
3027, 29eqtri 2841 . . 3 (Vtx‘𝑋) = 𝑉
3130a1i 11 . 2 (𝜑 → (Vtx‘𝑋) = 𝑉)
3215fveq2i 6666 . . . 4 (iEdg‘𝐻) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩)
3317, 19opiedgfvi 26722 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^𝑁)))⟩) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3432, 33eqtri 2841 . . 3 (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))
3534a1i 11 . 2 (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
3617, 23opiedgfvi 26722 . . 3 (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}
3736a1i 11 . 2 (𝜑 → (iEdg‘⟨𝑉, {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}⟩) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
3826fveq2i 6666 . . . 4 (iEdg‘𝑋) = (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩)
3917, 28opiedgfvi 26722 . . . 4 (iEdg‘⟨𝑉, (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))⟩) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
4038, 39eqtri 2841 . . 3 (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1))))
414nn0zd 12073 . . . . . 6 (𝜑𝑁 ∈ ℤ)
42 fzval3 13094 . . . . . . 7 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
4342eqcomd 2824 . . . . . 6 (𝑁 ∈ ℤ → (0..^(𝑁 + 1)) = (0...𝑁))
4441, 43syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = (0...𝑁))
4544imaeq2d 5922 . . . 4 (𝜑 → (𝐹 “ (0..^(𝑁 + 1))) = (𝐹 “ (0...𝑁)))
4645reseq2d 5846 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(𝑁 + 1)))) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
4740, 46syl5eq 2865 . 2 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
48 eupth2.o . 2 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐻)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
49 2fveq3 6668 . . . 4 (𝑘 = 𝑁 → (𝐼‘(𝐹𝑘)) = (𝐼‘(𝐹𝑁)))
50 fveq2 6663 . . . . 5 (𝑘 = 𝑁 → (𝑃𝑘) = (𝑃𝑁))
51 fvoveq1 7168 . . . . 5 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
5250, 51preq12d 4669 . . . 4 (𝑘 = 𝑁 → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
5349, 52eqeq12d 2834 . . 3 (𝑘 = 𝑁 → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))}))
54 eupth2.g . . . 4 (𝜑𝐺 ∈ UPGraph)
555, 6syl 17 . . . 4 (𝜑𝐹(Walks‘𝐺)𝑃)
562upgrwlkedg 27350 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5754, 55, 56syl2anc 584 . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
5853, 57, 11rspcdva 3622 . 2 (𝜑 → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁), (𝑃‘(𝑁 + 1))})
591, 2, 3, 11, 12, 14, 22, 25, 31, 35, 37, 47, 48, 58eupth2lem3lem7 27940 1 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207   = wceq 1528  wcel 2105  wral 3135  {crab 3139  c0 4288  ifcif 4463  {csn 4557  {cpr 4559  cop 4563   class class class wbr 5057  cres 5550  cima 5551  Fun wfun 6342  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526   + caddc 10528  cle 10664  2c2 11680  0cn0 11885  cz 11969  ...cfz 12880  ..^cfzo 13021  chash 13678  cdvds 15595  Vtxcvtx 26708  iEdgciedg 26709  UPGraphcupgr 26792  VtxDegcvtxdg 27174  Walkscwlks 27305  Trailsctrls 27399  EulerPathsceupth 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-xadd 12496  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-vtx 26710  df-iedg 26711  df-edg 26760  df-uhgr 26770  df-ushgr 26771  df-upgr 26794  df-uspgr 26862  df-vtxdg 27175  df-wlks 27308  df-trls 27401  df-eupth 27904
This theorem is referenced by:  eupth2lems  27944
  Copyright terms: Public domain W3C validator