MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem3 27271
Description: Lemma for eupth2lem3 27277, formerly part of proof of eupth2lem3 27277: If a loop {(𝑃𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
Assertion
Ref Expression
eupth2lem3lem3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem3
StepHypRef Expression
1 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
2 fveq2 6272 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
32breq2d 4740 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
43notbid 307 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
54elrab3 3438 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
61, 5syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
7 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
87eleq2d 2757 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96, 8bitr3d 270 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
109adantr 472 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
11 2z 11490 . . . . . 6 2 ∈ ℤ
1211a1i 11 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∈ ℤ)
13 trlsegvdeg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
14 trlsegvdeg.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
15 trlsegvdeg.f . . . . . . . 8 (𝜑 → Fun 𝐼)
16 trlsegvdeg.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
17 trlsegvdeg.w . . . . . . . 8 (𝜑𝐹(Trails‘𝐺)𝑃)
18 trlsegvdeg.vx . . . . . . . 8 (𝜑 → (Vtx‘𝑋) = 𝑉)
19 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
20 trlsegvdeg.vz . . . . . . . 8 (𝜑 → (Vtx‘𝑍) = 𝑉)
21 trlsegvdeg.ix . . . . . . . 8 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
22 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
23 trlsegvdeg.iz . . . . . . . 8 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
2413, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem1 27269 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
2524nn0zd 11561 . . . . . 6 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2625adantr 472 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2713, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem2 27270 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0)
2827nn0zd 11561 . . . . . 6 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
2928adantr 472 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
30 iddvds 15086 . . . . . . . 8 (2 ∈ ℤ → 2 ∥ 2)
3111, 30ax-mp 5 . . . . . . 7 2 ∥ 2
3219ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
33 fvexd 6284 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐹𝑁) ∈ V)
341ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 𝑈𝑉)
3522ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
36 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3736adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
38 ifptru 1061 . . . . . . . . . . . . . 14 ((𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3938adantl 473 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
4037, 39mpbid 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)})
41 sneq 4263 . . . . . . . . . . . . 13 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁)} = {𝑈})
4241eqcoms 2700 . . . . . . . . . . . 12 (𝑈 = (𝑃𝑁) → {(𝑃𝑁)} = {𝑈})
4340, 42sylan9eq 2746 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐼‘(𝐹𝑁)) = {𝑈})
4443opeq2d 4484 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {𝑈}⟩)
4544sneqd 4265 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {𝑈}⟩})
4635, 45eqtrd 2726 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {𝑈}⟩})
4732, 33, 34, 461loopgrvd2 26498 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 2)
4831, 47syl5breqr 4766 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
49 dvds0 15088 . . . . . . . 8 (2 ∈ ℤ → 2 ∥ 0)
5011, 49ax-mp 5 . . . . . . 7 2 ∥ 0
5119ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
52 fvexd 6284 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝐹𝑁) ∈ V)
5313, 14, 15, 16, 1, 17trlsegvdeglem1 27261 . . . . . . . . . 10 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
5453simpld 477 . . . . . . . . 9 (𝜑 → (𝑃𝑁) ∈ 𝑉)
5554ad2antrr 764 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑃𝑁) ∈ 𝑉)
5622adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
5740opeq2d 4484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {(𝑃𝑁)}⟩)
5857sneqd 4265 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5956, 58eqtrd 2726 . . . . . . . . 9 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
6059adantr 472 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
611adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 𝑈𝑉)
6261anim1i 593 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
63 eldifsn 4393 . . . . . . . . 9 (𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}) ↔ (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
6462, 63sylibr 224 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}))
6551, 52, 55, 60, 641loopgrvd0 26499 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 0)
6650, 65syl5breqr 4766 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
6748, 66pm2.61dane 2951 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
68 dvdsadd2b 15119 . . . . 5 ((2 ∈ ℤ ∧ ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ (((VtxDeg‘𝑌)‘𝑈) ∈ ℤ ∧ 2 ∥ ((VtxDeg‘𝑌)‘𝑈))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6912, 26, 29, 67, 68syl112anc 1411 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
7027nn0cnd 11434 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℂ)
7124nn0cnd 11434 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
7270, 71addcomd 10319 . . . . . 6 (𝜑 → (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
7372breq2d 4740 . . . . 5 (𝜑 → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7473adantr 472 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7569, 74bitrd 268 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7675notbid 307 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
77 simpr 479 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
7877eqeq2d 2702 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((𝑃‘0) = (𝑃𝑁) ↔ (𝑃‘0) = (𝑃‘(𝑁 + 1))))
7977preq2d 4350 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {(𝑃‘0), (𝑃𝑁)} = {(𝑃‘0), (𝑃‘(𝑁 + 1))})
8078, 79ifbieq2d 4187 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) = if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))
8180eleq2d 2757 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
8210, 76, 813bitr3d 298 1 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  if-wif 1050   = wceq 1564  wcel 2071  wne 2864  {crab 2986  Vcvv 3272  cdif 3645  wss 3648  c0 3991  ifcif 4162  {csn 4253  {cpr 4255  cop 4259   class class class wbr 4728  cres 5188  cima 5189  Fun wfun 5963  cfv 5969  (class class class)co 6733  0cc0 10017  1c1 10018   + caddc 10020  2c2 11151  cz 11458  ...cfz 12408  ..^cfzo 12548  chash 13200  cdvds 15071  Vtxcvtx 25962  iEdgciedg 25963  VtxDegcvtxdg 26460  Trailsctrls 26686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-int 4552  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-1o 7648  df-oadd 7652  df-er 7830  df-map 7944  df-pm 7945  df-en 8041  df-dom 8042  df-sdom 8043  df-fin 8044  df-card 8846  df-cda 9071  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-nn 11102  df-2 11160  df-n0 11374  df-xnn0 11445  df-z 11459  df-uz 11769  df-xadd 12029  df-fz 12409  df-fzo 12549  df-hash 13201  df-word 13374  df-dvds 15072  df-edg 26028  df-uhgr 26041  df-ushgr 26042  df-uspgr 26133  df-vtxdg 26461  df-wlks 26594  df-trls 26688
This theorem is referenced by:  eupth2lem3lem7  27275
  Copyright terms: Public domain W3C validator