MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem4 28013
Description: Lemma for eupth2lem3 28018, formerly part of proof of eupth2lem3 28018: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
eupth2lem3lem4.i (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
Assertion
Ref Expression
eupth2lem3lem4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6688 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐹𝑁) ∈ V)
2 trlsegvdeg.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
32ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈𝑉)
4 trlsegvdeg.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
5 trlsegvdeg.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
6 trlsegvdeg.f . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐼)
7 trlsegvdeg.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 trlsegvdeg.w . . . . . . . . . . . . . 14 (𝜑𝐹(Trails‘𝐺)𝑃)
94, 5, 6, 7, 2, 8trlsegvdeglem1 28002 . . . . . . . . . . . . 13 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
109simprd 498 . . . . . . . . . . . 12 (𝜑 → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
1110ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
12 neeq1 3081 . . . . . . . . . . . . . 14 ((𝑃𝑁) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
1312biimpcd 251 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1413adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1514imp 409 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
16 eupth2lem3lem4.i . . . . . . . . . . . 12 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
1716ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
18 trlsegvdeg.iy . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
1918ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2120adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
22 df-ne 3020 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ ¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
23 ifpfal 1069 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2422, 23sylbi 219 . . . . . . . . . . . . . . 15 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2524adantl 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
26 preq1 4672 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {𝑈, (𝑃‘(𝑁 + 1))})
2726sseq1d 4001 . . . . . . . . . . . . . . 15 ((𝑃𝑁) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2827biimpcd 251 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2925, 28syl6bi 255 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))))
3021, 29mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3130imp 409 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
32 trlsegvdeg.vy . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑌) = 𝑉)
3332ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (Vtx‘𝑌) = 𝑉)
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 27292 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
3534oveq2d 7175 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
3635breq2d 5081 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
3736notbid 320 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑋) = 𝑉)
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑍) = 𝑉)
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 28010 . . . . . . . . . . . . . 14 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
4342nn0zd 12088 . . . . . . . . . . . . 13 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
44 2nn 11713 . . . . . . . . . . . . . 14 2 ∈ ℕ
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
46 1lt2 11811 . . . . . . . . . . . . . 14 1 < 2
4746a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
48 ndvdsp1 15765 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
4943, 45, 47, 48syl3anc 1367 . . . . . . . . . . . 12 (𝜑 → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5049con2d 136 . . . . . . . . . . 11 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) → ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
51 1z 12015 . . . . . . . . . . . . . 14 1 ∈ ℤ
52 n2dvds1 15720 . . . . . . . . . . . . . 14 ¬ 2 ∥ 1
53 opoe 15715 . . . . . . . . . . . . . 14 (((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5451, 52, 53mpanr12 703 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5554ex 415 . . . . . . . . . . . 12 (((VtxDeg‘𝑋)‘𝑈) ∈ ℤ → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5643, 55syl 17 . . . . . . . . . . 11 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5750, 56impbid 214 . . . . . . . . . 10 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
58 fveq2 6673 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
5958breq2d 5081 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6059notbid 320 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6160elrab3 3684 . . . . . . . . . . 11 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
622, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
63 eupth2lem3.o . . . . . . . . . . 11 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
6463eleq2d 2901 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6557, 62, 643bitr2d 309 . . . . . . . . 9 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6665notbid 320 . . . . . . . 8 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6766ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
68 fvex 6686 . . . . . . . . 9 (𝑃𝑁) ∈ V
6968eupth2lem2 28001 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7069adantll 712 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7137, 67, 703bitrd 307 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7271expcom 416 . . . . 5 ((𝑃𝑁) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
7372eqcoms 2832 . . . 4 (𝑈 = (𝑃𝑁) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
74 fvexd 6688 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐹𝑁) ∈ V)
759simpld 497 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑁) ∈ 𝑉)
7675ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ∈ 𝑉)
772ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → 𝑈𝑉)
78 neeq2 3082 . . . . . . . . . . . . . 14 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃𝑁) ≠ 𝑈))
7978biimpcd 251 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8079adantl 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8180imp 409 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ≠ 𝑈)
8216ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
8318ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
84 preq2 4673 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {(𝑃𝑁), 𝑈})
8584sseq1d 4001 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑁 + 1)) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8685biimpcd 251 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8725, 86syl6bi 255 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))))
8821, 87mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8988imp 409 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))
9032ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (Vtx‘𝑌) = 𝑉)
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 27293 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
9291oveq2d 7175 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
9392breq2d 5081 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9493notbid 320 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9566ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96 necom 3072 . . . . . . . . . 10 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁))
97 fvex 6686 . . . . . . . . . . 11 (𝑃‘(𝑁 + 1)) ∈ V
9897eupth2lem2 28001 . . . . . . . . . 10 (((𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
9996, 98sylanb 583 . . . . . . . . 9 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
10099con1bid 358 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
101100adantll 712 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
10294, 95, 1013bitrd 307 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
103102expcom 416 . . . . 5 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
104103eqcoms 2832 . . . 4 (𝑈 = (𝑃‘(𝑁 + 1)) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
10573, 104jaoi 853 . . 3 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
106105com12 32 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
1071063impia 1113 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  if-wif 1057  w3a 1083   = wceq 1536  wcel 2113  wne 3019  {crab 3145  Vcvv 3497  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542  {csn 4570  {cpr 4572  cop 4576   class class class wbr 5069  cres 5560  cima 5561  Fun wfun 6352  cfv 6358  (class class class)co 7159  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cn 11641  2c2 11695  cz 11984  ...cfz 12895  ..^cfzo 13036  chash 13693  cdvds 15610  Vtxcvtx 26784  iEdgciedg 26785  VtxDegcvtxdg 27250  Trailsctrls 27475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-xadd 12511  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-dvds 15611  df-vtxdg 27251  df-wlks 27384  df-trls 27477
This theorem is referenced by:  eupth2lem3lem7  28016
  Copyright terms: Public domain W3C validator