MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem4 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem4 27209
Description: Lemma for eupth2lem3 27214, formerly part of proof of eupth2lem3 27214: If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 25-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
eupth2lem3lem4.i (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
Assertion
Ref Expression
eupth2lem3lem4 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem4
StepHypRef Expression
1 fvexd 6241 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐹𝑁) ∈ V)
2 trlsegvdeg.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
32ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈𝑉)
4 trlsegvdeg.v . . . . . . . . . . . . . 14 𝑉 = (Vtx‘𝐺)
5 trlsegvdeg.i . . . . . . . . . . . . . 14 𝐼 = (iEdg‘𝐺)
6 trlsegvdeg.f . . . . . . . . . . . . . 14 (𝜑 → Fun 𝐼)
7 trlsegvdeg.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
8 trlsegvdeg.w . . . . . . . . . . . . . 14 (𝜑𝐹(Trails‘𝐺)𝑃)
94, 5, 6, 7, 2, 8trlsegvdeglem1 27198 . . . . . . . . . . . . 13 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
109simprd 478 . . . . . . . . . . . 12 (𝜑 → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
1110ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝑃‘(𝑁 + 1)) ∈ 𝑉)
12 neeq1 2885 . . . . . . . . . . . . . 14 ((𝑃𝑁) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ 𝑈 ≠ (𝑃‘(𝑁 + 1))))
1312biimpcd 239 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1413adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈𝑈 ≠ (𝑃‘(𝑁 + 1))))
1514imp 444 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → 𝑈 ≠ (𝑃‘(𝑁 + 1)))
16 eupth2lem3lem4.i . . . . . . . . . . . 12 (𝜑 → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
1716ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
18 trlsegvdeg.iy . . . . . . . . . . . 12 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
1918ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
20 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2120adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
22 df-ne 2824 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ ¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
23 ifpfal 1044 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2422, 23sylbi 207 . . . . . . . . . . . . . . 15 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2524adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
26 preq1 4300 . . . . . . . . . . . . . . . 16 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {𝑈, (𝑃‘(𝑁 + 1))})
2726sseq1d 3665 . . . . . . . . . . . . . . 15 ((𝑃𝑁) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2827biimpcd 239 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
2925, 28syl6bi 243 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))))
3021, 29mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃𝑁) = 𝑈 → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3130imp 444 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → {𝑈, (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)))
32 trlsegvdeg.vy . . . . . . . . . . . 12 (𝜑 → (Vtx‘𝑌) = 𝑉)
3332ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (Vtx‘𝑌) = 𝑉)
341, 3, 11, 15, 17, 19, 31, 331hegrvtxdg1 26459 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
3534oveq2d 6706 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
3635breq2d 4697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
3736notbid 307 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
38 trlsegvdeg.vx . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑋) = 𝑉)
39 trlsegvdeg.vz . . . . . . . . . . . . . . 15 (𝜑 → (Vtx‘𝑍) = 𝑉)
40 trlsegvdeg.ix . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
41 trlsegvdeg.iz . . . . . . . . . . . . . . 15 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
424, 5, 6, 7, 2, 8, 38, 32, 39, 40, 18, 41eupth2lem3lem1 27206 . . . . . . . . . . . . . 14 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
4342nn0zd 11518 . . . . . . . . . . . . 13 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
44 2nn 11223 . . . . . . . . . . . . . 14 2 ∈ ℕ
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℕ)
46 1lt2 11232 . . . . . . . . . . . . . 14 1 < 2
4746a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1 < 2)
48 ndvdsp1 15182 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
4943, 45, 47, 48syl3anc 1366 . . . . . . . . . . . 12 (𝜑 → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) → ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5049con2d 129 . . . . . . . . . . 11 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) → ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
51 1z 11445 . . . . . . . . . . . . . 14 1 ∈ ℤ
52 n2dvds1 15151 . . . . . . . . . . . . . 14 ¬ 2 ∥ 1
53 opoe 15134 . . . . . . . . . . . . . 14 (((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) ∧ (1 ∈ ℤ ∧ ¬ 2 ∥ 1)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5451, 52, 53mpanr12 721 . . . . . . . . . . . . 13 ((((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1))
5554ex 449 . . . . . . . . . . . 12 (((VtxDeg‘𝑋)‘𝑈) ∈ ℤ → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5643, 55syl 17 . . . . . . . . . . 11 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) → 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
5750, 56impbid 202 . . . . . . . . . 10 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
58 fveq2 6229 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
5958breq2d 4697 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6059notbid 307 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
6160elrab3 3397 . . . . . . . . . . 11 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
622, 61syl 17 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
63 eupth2lem3.o . . . . . . . . . . 11 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
6463eleq2d 2716 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6557, 62, 643bitr2d 296 . . . . . . . . 9 (𝜑 → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6665notbid 307 . . . . . . . 8 (𝜑 → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
6766ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
68 fvex 6239 . . . . . . . . 9 (𝑃𝑁) ∈ V
6968eupth2lem2 27197 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7069adantll 750 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7137, 67, 703bitrd 294 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃𝑁) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
7271expcom 450 . . . . 5 ((𝑃𝑁) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
7372eqcoms 2659 . . . 4 (𝑈 = (𝑃𝑁) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
74 fvexd 6241 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐹𝑁) ∈ V)
759simpld 474 . . . . . . . . . . . 12 (𝜑 → (𝑃𝑁) ∈ 𝑉)
7675ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ∈ 𝑉)
772ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → 𝑈𝑉)
78 neeq2 2886 . . . . . . . . . . . . . 14 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃𝑁) ≠ 𝑈))
7978biimpcd 239 . . . . . . . . . . . . 13 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8079adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → (𝑃𝑁) ≠ 𝑈))
8180imp 444 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝑃𝑁) ≠ 𝑈)
8216ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (𝐼‘(𝐹𝑁)) ∈ 𝒫 𝑉)
8318ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
84 preq2 4301 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), (𝑃‘(𝑁 + 1))} = {(𝑃𝑁), 𝑈})
8584sseq1d 3665 . . . . . . . . . . . . . . 15 ((𝑃‘(𝑁 + 1)) = 𝑈 → ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) ↔ {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8685biimpcd 239 . . . . . . . . . . . . . 14 ({(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁)) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8725, 86syl6bi 243 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))))
8821, 87mpd 15 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑃‘(𝑁 + 1)) = 𝑈 → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁))))
8988imp 444 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → {(𝑃𝑁), 𝑈} ⊆ (𝐼‘(𝐹𝑁)))
9032ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (Vtx‘𝑌) = 𝑉)
9174, 76, 77, 81, 82, 83, 89, 901hegrvtxdg1r 26460 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → ((VtxDeg‘𝑌)‘𝑈) = 1)
9291oveq2d 6706 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + 1))
9392breq2d 4697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9493notbid 307 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1)))
9566ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + 1) ↔ ¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96 necom 2876 . . . . . . . . . 10 ((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ↔ (𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁))
97 fvex 6239 . . . . . . . . . . 11 (𝑃‘(𝑁 + 1)) ∈ V
9897eupth2lem2 27197 . . . . . . . . . 10 (((𝑃‘(𝑁 + 1)) ≠ (𝑃𝑁) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
9996, 98sylanb 488 . . . . . . . . 9 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
10099con1bid 344 . . . . . . . 8 (((𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
101100adantll 750 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
10294, 95, 1013bitrd 294 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) ∧ (𝑃‘(𝑁 + 1)) = 𝑈) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
103102expcom 450 . . . . 5 ((𝑃‘(𝑁 + 1)) = 𝑈 → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
104103eqcoms 2659 . . . 4 (𝑈 = (𝑃‘(𝑁 + 1)) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
10573, 104jaoi 393 . . 3 ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
106105com12 32 . 2 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1))) → ((𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))))
1071063impia 1280 1 ((𝜑 ∧ (𝑃𝑁) ≠ (𝑃‘(𝑁 + 1)) ∧ (𝑈 = (𝑃𝑁) ∨ 𝑈 = (𝑃‘(𝑁 + 1)))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  if-wif 1032  w3a 1054   = wceq 1523  wcel 2030  wne 2823  {crab 2945  Vcvv 3231  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210  {cpr 4212  cop 4216   class class class wbr 4685  cres 5145  cima 5146  Fun wfun 5920  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cn 11058  2c2 11108  cz 11415  ...cfz 12364  ..^cfzo 12504  #chash 13157  cdvds 15027  Vtxcvtx 25919  iEdgciedg 25920  VtxDegcvtxdg 26417  Trailsctrls 26643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-vtxdg 26418  df-wlks 26551  df-trls 26645
This theorem is referenced by:  eupth2lem3lem7  27212
  Copyright terms: Public domain W3C validator