MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthp1 Structured version   Visualization version   GIF version

Theorem eupthp1 27922
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 to become an Eulerian path 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 7-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵 ∈ V)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (♯‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
Assertion
Ref Expression
eupthp1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthp1
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵 ∈ V)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthiswlk 27918 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
108, 9syl 17 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
11 eupthp1.n . . 3 𝑁 = (♯‘𝐹)
12 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
13 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
14 eupthp1.u . . . 4 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
1514a1i 11 . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
16 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
17 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
18 eupthp1.s . . . 4 (Vtx‘𝑆) = 𝑉
1918a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
20 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
211, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 19, 20wlkp1 27390 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
222eupthi 27909 . . . . 5 (𝐹(EulerPaths‘𝐺)𝑃 → (𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼))
2311eqcomi 2827 . . . . . . . . 9 (♯‘𝐹) = 𝑁
2423oveq2i 7156 . . . . . . . 8 (0..^(♯‘𝐹)) = (0..^𝑁)
25 f1oeq2 6598 . . . . . . . 8 ((0..^(♯‘𝐹)) = (0..^𝑁) → (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼))
2624, 25ax-mp 5 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2726biimpi 217 . . . . . 6 (𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
2827adantl 482 . . . . 5 ((𝐹(Walks‘𝐺)𝑃𝐹:(0..^(♯‘𝐹))–1-1-onto→dom 𝐼) → 𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
298, 22, 283syl 18 . . . 4 (𝜑𝐹:(0..^𝑁)–1-1-onto→dom 𝐼)
3011fvexi 6677 . . . . . 6 𝑁 ∈ V
31 f1osng 6648 . . . . . 6 ((𝑁 ∈ V ∧ 𝐵 ∈ V) → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
3230, 5, 31sylancr 587 . . . . 5 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵})
33 dmsnopg 6063 . . . . . . 7 (𝐸 ∈ (Edg‘𝐺) → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3412, 33syl 17 . . . . . 6 (𝜑 → dom {⟨𝐵, 𝐸⟩} = {𝐵})
3534f1oeq3d 6605 . . . . 5 (𝜑 → ({⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩} ↔ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→{𝐵}))
3632, 35mpbird 258 . . . 4 (𝜑 → {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩})
37 fzodisjsn 13063 . . . . 5 ((0..^𝑁) ∩ {𝑁}) = ∅
3837a1i 11 . . . 4 (𝜑 → ((0..^𝑁) ∩ {𝑁}) = ∅)
3934ineq2d 4186 . . . . 5 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∩ {𝐵}))
40 disjsn 4639 . . . . . 6 ((dom 𝐼 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐼)
417, 40sylibr 235 . . . . 5 (𝜑 → (dom 𝐼 ∩ {𝐵}) = ∅)
4239, 41eqtrd 2853 . . . 4 (𝜑 → (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)
43 f1oun 6627 . . . 4 (((𝐹:(0..^𝑁)–1-1-onto→dom 𝐼 ∧ {⟨𝑁, 𝐵⟩}:{𝑁}–1-1-onto→dom {⟨𝐵, 𝐸⟩}) ∧ (((0..^𝑁) ∩ {𝑁}) = ∅ ∧ (dom 𝐼 ∩ dom {⟨𝐵, 𝐸⟩}) = ∅)) → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4429, 36, 38, 42, 43syl22anc 834 . . 3 (𝜑 → (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
4516a1i 11 . . . 4 (𝜑𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩}))
461, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16wlkp1lem2 27383 . . . . . 6 (𝜑 → (♯‘𝐻) = (𝑁 + 1))
4746oveq2d 7161 . . . . 5 (𝜑 → (0..^(♯‘𝐻)) = (0..^(𝑁 + 1)))
48 wlkcl 27324 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
4911eleq1i 2900 . . . . . . . . 9 (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)
50 elnn0uz 12271 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
5149, 50sylbb1 238 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0𝑁 ∈ (ℤ‘0))
5248, 51syl 17 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝑁 ∈ (ℤ‘0))
538, 9, 523syl 18 . . . . . 6 (𝜑𝑁 ∈ (ℤ‘0))
54 fzosplitsn 13133 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5553, 54syl 17 . . . . 5 (𝜑 → (0..^(𝑁 + 1)) = ((0..^𝑁) ∪ {𝑁}))
5647, 55eqtrd 2853 . . . 4 (𝜑 → (0..^(♯‘𝐻)) = ((0..^𝑁) ∪ {𝑁}))
57 dmun 5772 . . . . 5 dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})
5857a1i 11 . . . 4 (𝜑 → dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩}))
5945, 56, 58f1oeq123d 6603 . . 3 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}) ↔ (𝐹 ∪ {⟨𝑁, 𝐵⟩}):((0..^𝑁) ∪ {𝑁})–1-1-onto→(dom 𝐼 ∪ dom {⟨𝐵, 𝐸⟩})))
6044, 59mpbird 258 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
6114eqcomi 2827 . . 3 (𝐼 ∪ {⟨𝐵, 𝐸⟩}) = (iEdg‘𝑆)
6261iseupthf1o 27908 . 2 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ∪ {⟨𝐵, 𝐸⟩})))
6321, 60, 62sylanbrc 583 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cun 3931  cin 3932  wss 3933  c0 4288  {csn 4557  {cpr 4559  cop 4563   class class class wbr 5057  dom cdm 5548  Fun wfun 6342  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  Fincfn 8497  0cc0 10525  1c1 10526   + caddc 10528  0cn0 11885  cuz 12231  ..^cfzo 13021  chash 13678  Vtxcvtx 26708  iEdgciedg 26709  Edgcedg 26759  Walkscwlks 27305  EulerPathsceupth 27903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-ifp 1055  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-wlks 27308  df-trls 27401  df-eupth 27904
This theorem is referenced by:  eupth2eucrct  27923
  Copyright terms: Public domain W3C validator