Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eupthres Structured version   Visualization version   GIF version

Theorem eupthres 41364
Description: The restriction 𝐻, 𝑄 of an Eulerian path 𝐹, 𝑃 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
eupthres.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthres.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
eupthres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eupthres.h 𝐻 = (𝐹 ↾ (0..^𝑁))
eupthres.q 𝑄 = (𝑃 ↾ (0...𝑁))
eupthres.s (Vtx‘𝑆) = 𝑉
Assertion
Ref Expression
eupthres (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthres
StepHypRef Expression
1 eupth0.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthres.d . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eupthistrl 41360 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(TrailS‘𝐺)𝑃)
5 trlis1wlk 40886 . . . 4 (𝐹(TrailS‘𝐺)𝑃𝐹(1Walks‘𝐺)𝑃)
63, 4, 53syl 18 . . 3 (𝜑𝐹(1Walks‘𝐺)𝑃)
7 eupthres.n . . 3 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
8 eupthres.s . . . 4 (Vtx‘𝑆) = 𝑉
98a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
10 eupthres.e . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 eupthres.h . . 3 𝐻 = (𝐹 ↾ (0..^𝑁))
12 eupthres.q . . 3 𝑄 = (𝑃 ↾ (0...𝑁))
131, 2, 6, 7, 9, 10, 11, 121wlkres 40860 . 2 (𝜑𝐻(1Walks‘𝑆)𝑄)
143, 4syl 17 . . 3 (𝜑𝐹(TrailS‘𝐺)𝑃)
151, 2, 14, 7, 11trlreslem 40888 . 2 (𝜑𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
161, 2, 6, 7, 9, 10, 11, 121wlkreslem 40859 . . . 4 (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
17 eqid 2609 . . . . 5 (iEdg‘𝑆) = (iEdg‘𝑆)
1817iseupthf1o 41350 . . . 4 ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆))))
1916, 18syl 17 . . 3 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆))))
2010dmeqd 5234 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
2120f1oeq3d 6031 . . . 4 (𝜑 → (𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
2221anbi2d 735 . . 3 (𝜑 → ((𝐻(1Walks‘𝑆)𝑄𝐻:(0..^(#‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(1Walks‘𝑆)𝑄𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2319, 22bitrd 266 . 2 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(1Walks‘𝑆)𝑄𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2413, 15, 23mpbir2and 958 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  Vcvv 3172   class class class wbr 4577  dom cdm 5027  cres 5029  cima 5030  1-1-ontowf1o 5788  cfv 5789  (class class class)co 6526  0cc0 9792  ...cfz 12154  ..^cfzo 12291  #chash 12936  Vtxcvtx 40210  iEdgciedg 40211  1Walksc1wlks 40777  TrailSctrls 40880  EulerPathsceupth 41345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-ifp 1006  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10870  df-n0 11142  df-z 11213  df-uz 11522  df-fz 12155  df-fzo 12292  df-hash 12937  df-word 13102  df-substr 13106  df-1wlks 40781  df-trls 40882  df-eupth 41346
This theorem is referenced by:  eucrct2eupth1  41393
  Copyright terms: Public domain W3C validator