MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv1 Structured version   Visualization version   GIF version

Theorem eusv1 4851
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.)
Assertion
Ref Expression
eusv1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sp 2051 . . . 4 (∀𝑥 𝑦 = 𝐴𝑦 = 𝐴)
2 sp 2051 . . . 4 (∀𝑥 𝑧 = 𝐴𝑧 = 𝐴)
3 eqtr3 2641 . . . 4 ((𝑦 = 𝐴𝑧 = 𝐴) → 𝑦 = 𝑧)
41, 2, 3syl2an 494 . . 3 ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
54gen2 1721 . 2 𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)
6 eqeq1 2624 . . . 4 (𝑦 = 𝑧 → (𝑦 = 𝐴𝑧 = 𝐴))
76albidv 1847 . . 3 (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴))
87eu4 2516 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (∃𝑦𝑥 𝑦 = 𝐴 ∧ ∀𝑦𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧)))
95, 8mpbiran2 953 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wex 1702  ∃!weu 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-cleq 2613
This theorem is referenced by:  eusvnfb  4853
  Copyright terms: Public domain W3C validator