![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eusv2i | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2i | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2613 | . . 3 ⊢ Ⅎ𝑦∃!𝑦∀𝑥 𝑦 = 𝐴 | |
2 | nfcvd 2899 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝑦) | |
3 | eusvnf 5006 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
4 | 2, 3 | nfeqd 2906 | . . . . 5 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
5 | 4 | nfrd 1862 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
6 | 19.2 2054 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 5, 6 | impbid1 215 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴)) |
8 | 1, 7 | eubid 2621 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴)) |
9 | 8 | ibir 257 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1626 = wceq 1628 ∃wex 1849 ∃!weu 2603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-nul 4055 |
This theorem is referenced by: eusv2nf 5009 |
Copyright terms: Public domain | W3C validator |