MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2nf Structured version   Visualization version   GIF version

Theorem eusv2nf 5286
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2nf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 2668 . . . 4 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfe1 2148 . . . . . . 7 𝑥𝑥 𝑦 = 𝐴
32nfeuw 2673 . . . . . 6 𝑥∃!𝑦𝑥 𝑦 = 𝐴
4 eusv2.1 . . . . . . . . 9 𝐴 ∈ V
54isseti 3507 . . . . . . . 8 𝑦 𝑦 = 𝐴
6 19.8a 2173 . . . . . . . . 9 (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
76ancri 552 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
85, 7eximii 1831 . . . . . . 7 𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)
9 eupick 2712 . . . . . . 7 ((∃!𝑦𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
108, 9mpan2 689 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
113, 10alrimi 2206 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
12 nf6 2285 . . . . 5 (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
1311, 12sylibr 236 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
141, 13alrimi 2206 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
15 dfnfc2 4848 . . . 4 (∀𝑥 𝐴 ∈ V → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
1615, 4mpg 1792 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴)
1714, 16sylibr 236 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
18 eusvnfb 5284 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
194, 18mpbiran2 708 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
20 eusv2i 5285 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2119, 20sylbir 237 . 2 (𝑥𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2217, 21impbii 211 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1529   = wceq 1531  wex 1774  wnf 1778  wcel 2108  ∃!weu 2647  wnfc 2959  Vcvv 3493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-nul 4290  df-sn 4560  df-pr 4562  df-uni 4831
This theorem is referenced by:  eusv2  5287
  Copyright terms: Public domain W3C validator