MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvobj2 Structured version   Visualization version   GIF version

Theorem eusvobj2 7143
Description: Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
eusvobj1.1 𝐵 ∈ V
Assertion
Ref Expression
eusvobj2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem eusvobj2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 euabsn2 4654 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧})
2 eleq2 2901 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑥 ∈ {𝑧}))
3 abid 2803 . . . . . 6 (𝑥 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ ∃𝑦𝐴 𝑥 = 𝐵)
4 velsn 4576 . . . . . 6 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
52, 3, 43bitr3g 315 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵𝑥 = 𝑧))
6 nfre1 3306 . . . . . . . . 9 𝑦𝑦𝐴 𝑥 = 𝐵
76nfab 2984 . . . . . . . 8 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵}
87nfeq1 2993 . . . . . . 7 𝑦{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧}
9 eusvobj1.1 . . . . . . . . 9 𝐵 ∈ V
109elabrex 6996 . . . . . . . 8 (𝑦𝐴𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵})
11 eleq2 2901 . . . . . . . . 9 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝐵 ∈ {𝑧}))
129elsn 4575 . . . . . . . . . 10 (𝐵 ∈ {𝑧} ↔ 𝐵 = 𝑧)
13 eqcom 2828 . . . . . . . . . 10 (𝐵 = 𝑧𝑧 = 𝐵)
1412, 13bitri 277 . . . . . . . . 9 (𝐵 ∈ {𝑧} ↔ 𝑧 = 𝐵)
1511, 14syl6bb 289 . . . . . . . 8 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝐵 ∈ {𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} ↔ 𝑧 = 𝐵))
1610, 15syl5ib 246 . . . . . . 7 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑦𝐴𝑧 = 𝐵))
178, 16ralrimi 3216 . . . . . 6 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → ∀𝑦𝐴 𝑧 = 𝐵)
18 eqeq1 2825 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1918ralbidv 3197 . . . . . 6 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
2017, 19syl5ibrcom 249 . . . . 5 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
215, 20sylbid 242 . . . 4 ({𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
2221exlimiv 1927 . . 3 (∃𝑧{𝑥 ∣ ∃𝑦𝐴 𝑥 = 𝐵} = {𝑧} → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
231, 22sylbi 219 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
24 euex 2658 . . 3 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
25 rexn0 4453 . . . 4 (∃𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
2625exlimiv 1927 . . 3 (∃𝑥𝑦𝐴 𝑥 = 𝐵𝐴 ≠ ∅)
27 r19.2z 4439 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2827ex 415 . . 3 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2924, 26, 283syl 18 . 2 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
3023, 29impbid 214 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wex 1776  wcel 2110  ∃!weu 2649  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  c0 4290  {csn 4560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-nul 4291  df-sn 4561
This theorem is referenced by:  eusvobj1  7144
  Copyright terms: Public domain W3C validator