Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  even2n Structured version   Visualization version   GIF version

Theorem even2n 15009
 Description: An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
Assertion
Ref Expression
even2n (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
Distinct variable group:   𝑛,𝑁

Proof of Theorem even2n
StepHypRef Expression
1 evenelz 15003 . 2 (2 ∥ 𝑁𝑁 ∈ ℤ)
2 2z 11369 . . . . . . 7 2 ∈ ℤ
32a1i 11 . . . . . 6 (𝑛 ∈ ℤ → 2 ∈ ℤ)
4 id 22 . . . . . 6 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
53, 4zmulcld 11448 . . . . 5 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
65adantr 481 . . . 4 ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → (2 · 𝑛) ∈ ℤ)
7 eleq1 2686 . . . . 5 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ))
87adantl 482 . . . 4 ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → ((2 · 𝑛) ∈ ℤ ↔ 𝑁 ∈ ℤ))
96, 8mpbid 222 . . 3 ((𝑛 ∈ ℤ ∧ (2 · 𝑛) = 𝑁) → 𝑁 ∈ ℤ)
109rexlimiva 3023 . 2 (∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁𝑁 ∈ ℤ)
11 divides 14928 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁))
12 zcn 11342 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
13 2cnd 11053 . . . . . . 7 (𝑛 ∈ ℤ → 2 ∈ ℂ)
1412, 13mulcomd 10021 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 2) = (2 · 𝑛))
1514eqeq1d 2623 . . . . 5 (𝑛 ∈ ℤ → ((𝑛 · 2) = 𝑁 ↔ (2 · 𝑛) = 𝑁))
1615rexbiia 3035 . . . 4 (∃𝑛 ∈ ℤ (𝑛 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
1711, 16syl6bb 276 . . 3 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
182, 17mpan 705 . 2 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
191, 10, 18pm5.21nii 368 1 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∃wrex 2909   class class class wbr 4623  (class class class)co 6615   · cmul 9901  2c2 11030  ℤcz 11337   ∥ cdvds 14926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-n0 11253  df-z 11338  df-dvds 14927 This theorem is referenced by:  evennn02n  15017  evennn2n  15018  m1expe  15034
 Copyright terms: Public domain W3C validator