Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  even3prm2 Structured version   Visualization version   GIF version

Theorem even3prm2 43874
Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
even3prm2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))

Proof of Theorem even3prm2
StepHypRef Expression
1 olc 864 . . . 4 (𝑅 = 2 → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
21a1d 25 . . 3 (𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
3 df-ne 3015 . . . . . . . . . . . 12 (𝑅 ≠ 2 ↔ ¬ 𝑅 = 2)
4 eldifsn 4711 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) ↔ (𝑅 ∈ ℙ ∧ 𝑅 ≠ 2))
5 oddprmALTV 43842 . . . . . . . . . . . . . . 15 (𝑅 ∈ (ℙ ∖ {2}) → 𝑅 ∈ Odd )
6 emoo 43859 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Even ∧ 𝑅 ∈ Odd ) → (𝑁𝑅) ∈ Odd )
76expcom 416 . . . . . . . . . . . . . . 15 (𝑅 ∈ Odd → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
85, 7syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
94, 8sylbir 237 . . . . . . . . . . . . 13 ((𝑅 ∈ ℙ ∧ 𝑅 ≠ 2) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
109ex 415 . . . . . . . . . . . 12 (𝑅 ∈ ℙ → (𝑅 ≠ 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
113, 10syl5bir 245 . . . . . . . . . . 11 (𝑅 ∈ ℙ → (¬ 𝑅 = 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
1211com23 86 . . . . . . . . . 10 (𝑅 ∈ ℙ → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
13123ad2ant3 1130 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
1413impcom 410 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
15143adant3 1127 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
1615impcom 410 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) ∈ Odd )
17 3simpa 1143 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
18173ad2ant2 1129 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
1918adantl 484 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
20 eqcom 2826 . . . . . . . . 9 (𝑁 = ((𝑃 + 𝑄) + 𝑅) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁)
21 evenz 43785 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2221zcnd 12080 . . . . . . . . . . . 12 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2322adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑁 ∈ ℂ)
24 prmz 16011 . . . . . . . . . . . . . 14 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
2524zcnd 12080 . . . . . . . . . . . . 13 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
26253ad2ant3 1130 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
2726adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑅 ∈ ℂ)
28 prmz 16011 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 prmz 16011 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
30 zaddcl 12014 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
3128, 29, 30syl2an 597 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
3231zcnd 12080 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
33323adant3 1127 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
3433adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑃 + 𝑄) ∈ ℂ)
3523, 27, 34subadd2d 11008 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → ((𝑁𝑅) = (𝑃 + 𝑄) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁))
3635biimprd 250 . . . . . . . . 9 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (((𝑃 + 𝑄) + 𝑅) = 𝑁 → (𝑁𝑅) = (𝑃 + 𝑄)))
3720, 36syl5bi 244 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑁 = ((𝑃 + 𝑄) + 𝑅) → (𝑁𝑅) = (𝑃 + 𝑄)))
38373impia 1112 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑁𝑅) = (𝑃 + 𝑄))
3938adantl 484 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) = (𝑃 + 𝑄))
40 odd2prm2 43873 . . . . . 6 (((𝑁𝑅) ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑁𝑅) = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
4116, 19, 39, 40syl3anc 1366 . . . . 5 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 = 2 ∨ 𝑄 = 2))
4241orcd 869 . . . 4 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4342ex 415 . . 3 𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
442, 43pm2.61i 184 . 2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
45 df-3or 1083 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) ↔ ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4644, 45sylibr 236 1 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3o 1081  w3a 1082   = wceq 1531  wcel 2108  wne 3014  cdif 3931  {csn 4559  (class class class)co 7148  cc 10527   + caddc 10532  cmin 10862  2c2 11684  cz 11973  cprime 16007   Even ceven 43779   Odd codd 43780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008  df-even 43781  df-odd 43782
This theorem is referenced by:  mogoldbblem  43875
  Copyright terms: Public domain W3C validator