Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  even3prm2 Structured version   Visualization version   GIF version

Theorem even3prm2 41953
Description: If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
even3prm2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))

Proof of Theorem even3prm2
StepHypRef Expression
1 olc 398 . . . 4 (𝑅 = 2 → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
21a1d 25 . . 3 (𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
3 df-ne 2824 . . . . . . . . . . . 12 (𝑅 ≠ 2 ↔ ¬ 𝑅 = 2)
4 eldifsn 4350 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) ↔ (𝑅 ∈ ℙ ∧ 𝑅 ≠ 2))
5 oddprmALTV 41923 . . . . . . . . . . . . . . 15 (𝑅 ∈ (ℙ ∖ {2}) → 𝑅 ∈ Odd )
6 emoo 41938 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Even ∧ 𝑅 ∈ Odd ) → (𝑁𝑅) ∈ Odd )
76expcom 450 . . . . . . . . . . . . . . 15 (𝑅 ∈ Odd → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
85, 7syl 17 . . . . . . . . . . . . . 14 (𝑅 ∈ (ℙ ∖ {2}) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
94, 8sylbir 225 . . . . . . . . . . . . 13 ((𝑅 ∈ ℙ ∧ 𝑅 ≠ 2) → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd ))
109ex 449 . . . . . . . . . . . 12 (𝑅 ∈ ℙ → (𝑅 ≠ 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
113, 10syl5bir 233 . . . . . . . . . . 11 (𝑅 ∈ ℙ → (¬ 𝑅 = 2 → (𝑁 ∈ Even → (𝑁𝑅) ∈ Odd )))
1211com23 86 . . . . . . . . . 10 (𝑅 ∈ ℙ → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
13123ad2ant3 1104 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑁 ∈ Even → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd )))
1413impcom 445 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
15143adant3 1101 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (¬ 𝑅 = 2 → (𝑁𝑅) ∈ Odd ))
1615impcom 445 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) ∈ Odd )
17 3simpa 1078 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
18173ad2ant2 1103 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
1918adantl 481 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ))
20 eqcom 2658 . . . . . . . . 9 (𝑁 = ((𝑃 + 𝑄) + 𝑅) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁)
21 evenz 41868 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
2221zcnd 11521 . . . . . . . . . . . 12 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
2322adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑁 ∈ ℂ)
24 prmz 15436 . . . . . . . . . . . . . 14 (𝑅 ∈ ℙ → 𝑅 ∈ ℤ)
2524zcnd 11521 . . . . . . . . . . . . 13 (𝑅 ∈ ℙ → 𝑅 ∈ ℂ)
26253ad2ant3 1104 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → 𝑅 ∈ ℂ)
2726adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → 𝑅 ∈ ℂ)
28 prmz 15436 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
29 prmz 15436 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
30 zaddcl 11455 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑃 + 𝑄) ∈ ℤ)
3128, 29, 30syl2an 493 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℤ)
3231zcnd 11521 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
33323adant3 1101 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) → (𝑃 + 𝑄) ∈ ℂ)
3433adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑃 + 𝑄) ∈ ℂ)
3523, 27, 34subadd2d 10449 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → ((𝑁𝑅) = (𝑃 + 𝑄) ↔ ((𝑃 + 𝑄) + 𝑅) = 𝑁))
3635biimprd 238 . . . . . . . . 9 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (((𝑃 + 𝑄) + 𝑅) = 𝑁 → (𝑁𝑅) = (𝑃 + 𝑄)))
3720, 36syl5bi 232 . . . . . . . 8 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ)) → (𝑁 = ((𝑃 + 𝑄) + 𝑅) → (𝑁𝑅) = (𝑃 + 𝑄)))
38373impia 1280 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑁𝑅) = (𝑃 + 𝑄))
3938adantl 481 . . . . . 6 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑁𝑅) = (𝑃 + 𝑄))
40 odd2prm2 41952 . . . . . 6 (((𝑁𝑅) ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑁𝑅) = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2))
4116, 19, 39, 40syl3anc 1366 . . . . 5 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → (𝑃 = 2 ∨ 𝑄 = 2))
4241orcd 406 . . . 4 ((¬ 𝑅 = 2 ∧ (𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅))) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4342ex 449 . . 3 𝑅 = 2 → ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2)))
442, 43pm2.61i 176 . 2 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
45 df-3or 1055 . 2 ((𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2) ↔ ((𝑃 = 2 ∨ 𝑄 = 2) ∨ 𝑅 = 2))
4644, 45sylibr 224 1 ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  cdif 3604  {csn 4210  (class class class)co 6690  cc 9972   + caddc 9977  cmin 10304  2c2 11108  cz 11415  cprime 15432   Even ceven 41862   Odd codd 41863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433  df-even 41864  df-odd 41865
This theorem is referenced by:  mogoldbblem  41954
  Copyright terms: Public domain W3C validator