Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpop3 Structured version   Visualization version   GIF version

Theorem evengpop3 43970
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.)
Assertion
Ref Expression
evengpop3 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpop3
StepHypRef Expression
1 3odd 43880 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
32anim1i 616 . . . . 5 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 464 . . . 4 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 43876 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 5072 . . . . 5 (𝑚 = (𝑁 − 3) → (5 < 𝑚 ↔ 5 < (𝑁 − 3)))
8 eleq1 2902 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOddW ↔ (𝑁 − 3) ∈ GoldbachOddW ))
97, 8imbi12d 347 . . . 4 (𝑚 = (𝑁 − 3) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
109adantl 484 . . 3 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
116, 10rspcdv 3617 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
12 eluz2 12252 . . . . 5 (𝑁 ∈ (ℤ‘9) ↔ (9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁))
13 5p3e8 11797 . . . . . . . 8 (5 + 3) = 8
14 8p1e9 11790 . . . . . . . . 9 (8 + 1) = 9
15 9cn 11740 . . . . . . . . . 10 9 ∈ ℂ
16 ax-1cn 10597 . . . . . . . . . 10 1 ∈ ℂ
17 8cn 11737 . . . . . . . . . 10 8 ∈ ℂ
1815, 16, 17subadd2i 10976 . . . . . . . . 9 ((9 − 1) = 8 ↔ (8 + 1) = 9)
1914, 18mpbir 233 . . . . . . . 8 (9 − 1) = 8
2013, 19eqtr4i 2849 . . . . . . 7 (5 + 3) = (9 − 1)
21 zlem1lt 12037 . . . . . . . 8 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 ≤ 𝑁 ↔ (9 − 1) < 𝑁))
2221biimp3a 1465 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (9 − 1) < 𝑁)
2320, 22eqbrtrid 5103 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 + 3) < 𝑁)
24 5re 11727 . . . . . . . . . 10 5 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 5 ∈ ℝ)
26 3re 11720 . . . . . . . . . 10 3 ∈ ℝ
2726a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 3 ∈ ℝ)
28 zre 11988 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2925, 27, 283jca 1124 . . . . . . . 8 (𝑁 ∈ ℤ → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30293ad2ant2 1130 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31 ltaddsub 11116 . . . . . . 7 ((5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3230, 31syl 17 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3323, 32mpbid 234 . . . . 5 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → 5 < (𝑁 − 3))
3412, 33sylbi 219 . . . 4 (𝑁 ∈ (ℤ‘9) → 5 < (𝑁 − 3))
3534adantr 483 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → 5 < (𝑁 − 3))
36 simpr 487 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 − 3) ∈ GoldbachOddW )
37 oveq1 7165 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
3837eqeq2d 2834 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
3938adantl 484 . . . . 5 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
40 eluzelcn 12258 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
41 3cn 11721 . . . . . . . . . 10 3 ∈ ℂ
4241a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
4340, 42jca 514 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4443adantr 483 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4544adantr 483 . . . . . 6 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
46 npcan 10897 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4746eqcomd 2829 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
4845, 47syl 17 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → 𝑁 = ((𝑁 − 3) + 3))
4936, 39, 48rspcedvd 3628 . . . 4 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))
5049ex 415 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOddW → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5135, 50embantd 59 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5211, 51syldc 48 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872  3c3 11696  5c5 11698  8c8 11701  9c9 11702  cz 11984  cuz 12246   Even ceven 43796   Odd codd 43797   GoldbachOddW cgbow 43918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-even 43798  df-odd 43799
This theorem is referenced by:  nnsum4primeseven  43972
  Copyright terms: Public domain W3C validator