Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpop3 Structured version   Visualization version   GIF version

Theorem evengpop3 40972
 Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.)
Assertion
Ref Expression
evengpop3 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpop3
StepHypRef Expression
1 3odd 40913 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
32anim1i 591 . . . . 5 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 467 . . . 4 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 40909 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 4617 . . . . 5 (𝑚 = (𝑁 − 3) → (5 < 𝑚 ↔ 5 < (𝑁 − 3)))
8 eleq1 2686 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOdd ↔ (𝑁 − 3) ∈ GoldbachOdd ))
97, 8imbi12d 334 . . . 4 (𝑚 = (𝑁 − 3) → ((5 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
109adantl 482 . . 3 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((5 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
116, 10rspcdv 3298 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOdd ) → (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
12 eluz2 11637 . . . . 5 (𝑁 ∈ (ℤ‘9) ↔ (9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁))
13 5p3e8 11110 . . . . . . . 8 (5 + 3) = 8
14 8p1e9 11102 . . . . . . . . 9 (8 + 1) = 9
15 9cn 11052 . . . . . . . . . 10 9 ∈ ℂ
16 ax-1cn 9938 . . . . . . . . . 10 1 ∈ ℂ
17 8cn 11050 . . . . . . . . . 10 8 ∈ ℂ
1815, 16, 17subadd2i 10313 . . . . . . . . 9 ((9 − 1) = 8 ↔ (8 + 1) = 9)
1914, 18mpbir 221 . . . . . . . 8 (9 − 1) = 8
2013, 19eqtr4i 2646 . . . . . . 7 (5 + 3) = (9 − 1)
21 zlem1lt 11373 . . . . . . . 8 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 ≤ 𝑁 ↔ (9 − 1) < 𝑁))
2221biimp3a 1429 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (9 − 1) < 𝑁)
2320, 22syl5eqbr 4648 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 + 3) < 𝑁)
24 5re 11043 . . . . . . . . . 10 5 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 5 ∈ ℝ)
26 3re 11038 . . . . . . . . . 10 3 ∈ ℝ
2726a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 3 ∈ ℝ)
28 zre 11325 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2925, 27, 283jca 1240 . . . . . . . 8 (𝑁 ∈ ℤ → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30293ad2ant2 1081 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31 ltaddsub 10446 . . . . . . 7 ((5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3230, 31syl 17 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3323, 32mpbid 222 . . . . 5 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → 5 < (𝑁 − 3))
3412, 33sylbi 207 . . . 4 (𝑁 ∈ (ℤ‘9) → 5 < (𝑁 − 3))
3534adantr 481 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → 5 < (𝑁 − 3))
36 simpr 477 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 − 3) ∈ GoldbachOdd )
37 oveq1 6611 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
3837eqeq2d 2631 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
3938adantl 482 . . . . 5 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
40 eluzelcn 11643 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
41 3cn 11039 . . . . . . . . . 10 3 ∈ ℂ
4241a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
4340, 42jca 554 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4443adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4544adantr 481 . . . . . 6 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
46 npcan 10234 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4746eqcomd 2627 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
4845, 47syl 17 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → 𝑁 = ((𝑁 − 3) + 3))
4936, 39, 48rspcedvd 3302 . . . 4 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
5049ex 450 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOdd → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5135, 50embantd 59 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5211, 51syldc 48 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   class class class wbr 4613  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879  1c1 9881   + caddc 9883   < clt 10018   ≤ cle 10019   − cmin 10210  3c3 11015  5c5 11017  8c8 11020  9c9 11021  ℤcz 11321  ℤ≥cuz 11631   Even ceven 40833   Odd codd 40834   GoldbachOdd cgbo 40926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-uz 11632  df-even 40835  df-odd 40836 This theorem is referenced by:  nnsum4primeseven  40974
 Copyright terms: Public domain W3C validator