Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenltle Structured version   Visualization version   GIF version

Theorem evenltle 41951
Description: If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.)
Assertion
Ref Expression
evenltle ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁)

Proof of Theorem evenltle
StepHypRef Expression
1 evenz 41868 . . . 4 (𝑀 ∈ Even → 𝑀 ∈ ℤ)
2 evenz 41868 . . . 4 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
3 zltp1le 11465 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
41, 2, 3syl2anr 494 . . 3 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
51zred 11520 . . . . . 6 (𝑀 ∈ Even → 𝑀 ∈ ℝ)
6 peano2re 10247 . . . . . 6 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
75, 6syl 17 . . . . 5 (𝑀 ∈ Even → (𝑀 + 1) ∈ ℝ)
82zred 11520 . . . . 5 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
9 leloe 10162 . . . . 5 (((𝑀 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁)))
107, 8, 9syl2anr 494 . . . 4 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 ↔ ((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁)))
111peano2zd 11523 . . . . . . 7 (𝑀 ∈ Even → (𝑀 + 1) ∈ ℤ)
12 zltp1le 11465 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁))
1311, 2, 12syl2anr 494 . . . . . 6 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 ↔ ((𝑀 + 1) + 1) ≤ 𝑁))
141zcnd 11521 . . . . . . . . . 10 (𝑀 ∈ Even → 𝑀 ∈ ℂ)
1514adantl 481 . . . . . . . . 9 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → 𝑀 ∈ ℂ)
16 add1p1 11321 . . . . . . . . 9 (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + 2))
1715, 16syl 17 . . . . . . . 8 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) + 1) = (𝑀 + 2))
1817breq1d 4695 . . . . . . 7 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 ↔ (𝑀 + 2) ≤ 𝑁))
1918biimpd 219 . . . . . 6 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁))
2013, 19sylbid 230 . . . . 5 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) < 𝑁 → (𝑀 + 2) ≤ 𝑁))
21 evenp1odd 41878 . . . . . 6 (𝑀 ∈ Even → (𝑀 + 1) ∈ Odd )
22 zneoALTV 41905 . . . . . . 7 ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → 𝑁 ≠ (𝑀 + 1))
23 eqneqall 2834 . . . . . . . 8 (𝑁 = (𝑀 + 1) → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁))
2423eqcoms 2659 . . . . . . 7 ((𝑀 + 1) = 𝑁 → (𝑁 ≠ (𝑀 + 1) → (𝑀 + 2) ≤ 𝑁))
2522, 24syl5com 31 . . . . . 6 ((𝑁 ∈ Even ∧ (𝑀 + 1) ∈ Odd ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁))
2621, 25sylan2 490 . . . . 5 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) = 𝑁 → (𝑀 + 2) ≤ 𝑁))
2720, 26jaod 394 . . . 4 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (((𝑀 + 1) < 𝑁 ∨ (𝑀 + 1) = 𝑁) → (𝑀 + 2) ≤ 𝑁))
2810, 27sylbid 230 . . 3 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → ((𝑀 + 1) ≤ 𝑁 → (𝑀 + 2) ≤ 𝑁))
294, 28sylbid 230 . 2 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ) → (𝑀 < 𝑁 → (𝑀 + 2) ≤ 𝑁))
30293impia 1280 1 ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  1c1 9975   + caddc 9977   < clt 10112  cle 10113  2c2 11108  cz 11415   Even ceven 41862   Odd codd 41863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-even 41864  df-odd 41865
This theorem is referenced by:  mogoldbb  41998
  Copyright terms: Public domain W3C validator