Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evenprm2 Structured version   Visualization version   GIF version

Theorem evenprm2 40948
Description: A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.)
Assertion
Ref Expression
evenprm2 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))

Proof of Theorem evenprm2
StepHypRef Expression
1 2a1 28 . . 3 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2)))
2 df-ne 2791 . . . . . . . . 9 (𝑃 ≠ 2 ↔ ¬ 𝑃 = 2)
32biimpri 218 . . . . . . . 8 𝑃 = 2 → 𝑃 ≠ 2)
43anim2i 592 . . . . . . 7 ((𝑃 ∈ ℙ ∧ ¬ 𝑃 = 2) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
54ancoms 469 . . . . . 6 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
6 eldifsn 4292 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
75, 6sylibr 224 . . . . 5 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℙ ∖ {2}))
8 oddprmALTV 40923 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ Odd )
9 oddneven 40882 . . . . . 6 (𝑃 ∈ Odd → ¬ 𝑃 ∈ Even )
109pm2.21d 118 . . . . 5 (𝑃 ∈ Odd → (𝑃 ∈ Even → 𝑃 = 2))
117, 8, 103syl 18 . . . 4 ((¬ 𝑃 = 2 ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ Even → 𝑃 = 2))
1211ex 450 . . 3 𝑃 = 2 → (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2)))
131, 12pm2.61i 176 . 2 (𝑃 ∈ ℙ → (𝑃 ∈ Even → 𝑃 = 2))
14 2evenALTV 40928 . . 3 2 ∈ Even
15 eleq1 2686 . . 3 (𝑃 = 2 → (𝑃 ∈ Even ↔ 2 ∈ Even ))
1614, 15mpbiri 248 . 2 (𝑃 = 2 → 𝑃 ∈ Even )
1713, 16impbid1 215 1 (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3556  {csn 4153  2c2 11022  cprime 15320   Even ceven 40862   Odd codd 40863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-seq 12750  df-exp 12809  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-dvds 14919  df-prm 15321  df-even 40864  df-odd 40865
This theorem is referenced by:  oddprmne2  40949  sgoldbaltlem1  40988
  Copyright terms: Public domain W3C validator