MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumd Structured version   Visualization version   GIF version

Theorem evl1gsumd 19653
Description: Polynomial evaluation builder for a finite group sum of polynomials. (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
evl1gsumd.m (𝜑 → ∀𝑥𝑁 𝑀𝑈)
evl1gsumd.n (𝜑𝑁 ∈ Fin)
Assertion
Ref Expression
evl1gsumd (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝐵   𝑥,𝑁   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑀(𝑥)

Proof of Theorem evl1gsumd
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1gsumd.m . 2 (𝜑 → ∀𝑥𝑁 𝑀𝑈)
2 evl1gsumd.n . . 3 (𝜑𝑁 ∈ Fin)
3 raleq 3130 . . . . . . 7 (𝑛 = ∅ → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ ∅ 𝑀𝑈))
43anbi2d 739 . . . . . 6 (𝑛 = ∅ → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈)))
5 mpteq1 4702 . . . . . . . . . 10 (𝑛 = ∅ → (𝑥𝑛𝑀) = (𝑥 ∈ ∅ ↦ 𝑀))
65oveq2d 6626 . . . . . . . . 9 (𝑛 = ∅ → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))
76fveq2d 6157 . . . . . . . 8 (𝑛 = ∅ → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))))
87fveq1d 6155 . . . . . . 7 (𝑛 = ∅ → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌))
9 mpteq1 4702 . . . . . . . 8 (𝑛 = ∅ → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))
109oveq2d 6626 . . . . . . 7 (𝑛 = ∅ → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
118, 10eqeq12d 2636 . . . . . 6 (𝑛 = ∅ → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)))))
124, 11imbi12d 334 . . . . 5 (𝑛 = ∅ → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))))
13 raleq 3130 . . . . . . 7 (𝑛 = 𝑚 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑚 𝑀𝑈))
1413anbi2d 739 . . . . . 6 (𝑛 = 𝑚 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑚 𝑀𝑈)))
15 mpteq1 4702 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥𝑛𝑀) = (𝑥𝑚𝑀))
1615oveq2d 6626 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑚𝑀)))
1716fveq2d 6157 . . . . . . . 8 (𝑛 = 𝑚 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑚𝑀))))
1817fveq1d 6155 . . . . . . 7 (𝑛 = 𝑚 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
19 mpteq1 4702 . . . . . . . 8 (𝑛 = 𝑚 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
2019oveq2d 6626 . . . . . . 7 (𝑛 = 𝑚 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))
2118, 20eqeq12d 2636 . . . . . 6 (𝑛 = 𝑚 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))))
2214, 21imbi12d 334 . . . . 5 (𝑛 = 𝑚 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
23 raleq 3130 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈))
2423anbi2d 739 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈)))
25 mpteq1 4702 . . . . . . . . . 10 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛𝑀) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))
2625oveq2d 6626 . . . . . . . . 9 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))
2726fveq2d 6157 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))))
2827fveq1d 6155 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌))
29 mpteq1 4702 . . . . . . . 8 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))
3029oveq2d 6626 . . . . . . 7 (𝑛 = (𝑚 ∪ {𝑎}) → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
3128, 30eqeq12d 2636 . . . . . 6 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
3224, 31imbi12d 334 . . . . 5 (𝑛 = (𝑚 ∪ {𝑎}) → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
33 raleq 3130 . . . . . . 7 (𝑛 = 𝑁 → (∀𝑥𝑛 𝑀𝑈 ↔ ∀𝑥𝑁 𝑀𝑈))
3433anbi2d 739 . . . . . 6 (𝑛 = 𝑁 → ((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) ↔ (𝜑 ∧ ∀𝑥𝑁 𝑀𝑈)))
35 mpteq1 4702 . . . . . . . . . 10 (𝑛 = 𝑁 → (𝑥𝑛𝑀) = (𝑥𝑁𝑀))
3635oveq2d 6626 . . . . . . . . 9 (𝑛 = 𝑁 → (𝑃 Σg (𝑥𝑛𝑀)) = (𝑃 Σg (𝑥𝑁𝑀)))
3736fveq2d 6157 . . . . . . . 8 (𝑛 = 𝑁 → (𝑂‘(𝑃 Σg (𝑥𝑛𝑀))) = (𝑂‘(𝑃 Σg (𝑥𝑁𝑀))))
3837fveq1d 6155 . . . . . . 7 (𝑛 = 𝑁 → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌))
39 mpteq1 4702 . . . . . . . 8 (𝑛 = 𝑁 → (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)) = (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))
4039oveq2d 6626 . . . . . . 7 (𝑛 = 𝑁 → (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
4138, 40eqeq12d 2636 . . . . . 6 (𝑛 = 𝑁 → (((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌))) ↔ ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
4234, 41imbi12d 334 . . . . 5 (𝑛 = 𝑁 → (((𝜑 ∧ ∀𝑥𝑛 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑛𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑛 ↦ ((𝑂𝑀)‘𝑌)))) ↔ ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
43 mpt0 5983 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑀) = ∅
4443oveq2i 6621 . . . . . . . . . . . 12 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (𝑃 Σg ∅)
45 eqid 2621 . . . . . . . . . . . . 13 (0g𝑃) = (0g𝑃)
4645gsum0 17210 . . . . . . . . . . . 12 (𝑃 Σg ∅) = (0g𝑃)
4744, 46eqtri 2643 . . . . . . . . . . 11 (𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)) = (0g𝑃)
4847fveq2i 6156 . . . . . . . . . 10 (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘(0g𝑃))
49 evl1gsumd.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ CRing)
50 crngring 18490 . . . . . . . . . . . . . 14 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
5149, 50syl 17 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
52 evl1gsumd.p . . . . . . . . . . . . . 14 𝑃 = (Poly1𝑅)
53 eqid 2621 . . . . . . . . . . . . . 14 (algSc‘𝑃) = (algSc‘𝑃)
54 eqid 2621 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
5552, 53, 54, 45ply1scl0 19592 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5651, 55syl 17 . . . . . . . . . . . 12 (𝜑 → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
5756eqcomd 2627 . . . . . . . . . . 11 (𝜑 → (0g𝑃) = ((algSc‘𝑃)‘(0g𝑅)))
5857fveq2d 6157 . . . . . . . . . 10 (𝜑 → (𝑂‘(0g𝑃)) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
5948, 58syl5eq 2667 . . . . . . . . 9 (𝜑 → (𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀))) = (𝑂‘((algSc‘𝑃)‘(0g𝑅))))
6059fveq1d 6155 . . . . . . . 8 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌))
61 evl1gsumd.q . . . . . . . . . 10 𝑂 = (eval1𝑅)
62 evl1gsumd.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
63 evl1gsumd.u . . . . . . . . . 10 𝑈 = (Base‘𝑃)
64 ringgrp 18484 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
6551, 64syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ Grp)
6662, 54grpidcl 17382 . . . . . . . . . . 11 (𝑅 ∈ Grp → (0g𝑅) ∈ 𝐵)
6765, 66syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑅) ∈ 𝐵)
68 evl1gsumd.y . . . . . . . . . 10 (𝜑𝑌𝐵)
6961, 52, 62, 53, 63, 49, 67, 68evl1scad 19631 . . . . . . . . 9 (𝜑 → (((algSc‘𝑃)‘(0g𝑅)) ∈ 𝑈 ∧ ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅)))
7069simprd 479 . . . . . . . 8 (𝜑 → ((𝑂‘((algSc‘𝑃)‘(0g𝑅)))‘𝑌) = (0g𝑅))
7160, 70eqtrd 2655 . . . . . . 7 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (0g𝑅))
72 mpt0 5983 . . . . . . . . 9 (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌)) = ∅
7372oveq2i 6621 . . . . . . . 8 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg ∅)
7454gsum0 17210 . . . . . . . 8 (𝑅 Σg ∅) = (0g𝑅)
7573, 74eqtri 2643 . . . . . . 7 (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))) = (0g𝑅)
7671, 75syl6eqr 2673 . . . . . 6 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7776adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ∅ 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ ∅ ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ ∅ ↦ ((𝑂𝑀)‘𝑌))))
7861, 52, 62, 63, 49, 68evl1gsumdlem 19652 . . . . . . . 8 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
79783expia 1264 . . . . . . 7 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (𝜑 → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
8079a2d 29 . . . . . 6 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → ((𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
81 impexp 462 . . . . . 6 (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))))
82 impexp 462 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))) ↔ (𝜑 → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8380, 81, 823imtr4g 285 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚) → (((𝜑 ∧ ∀𝑥𝑚 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝜑 ∧ ∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
8412, 22, 32, 42, 77, 83findcard2s 8153 . . . 4 (𝑁 ∈ Fin → ((𝜑 ∧ ∀𝑥𝑁 𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
8584expd 452 . . 3 (𝑁 ∈ Fin → (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))))
862, 85mpcom 38 . 2 (𝜑 → (∀𝑥𝑁 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌)))))
871, 86mpd 15 1 (𝜑 → ((𝑂‘(𝑃 Σg (𝑥𝑁𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑁 ↦ ((𝑂𝑀)‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  cun 3557  c0 3896  {csn 4153  cmpt 4678  cfv 5852  (class class class)co 6610  Fincfn 7907  Basecbs 15792  0gc0g 16032   Σg cgsu 16033  Grpcgrp 17354  Ringcrg 18479  CRingccrg 18480  algSccascl 19243  Poly1cpl1 19479  eval1ce1 19611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-ofr 6858  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-hom 15898  df-cco 15899  df-0g 16034  df-gsum 16035  df-prds 16040  df-pws 16042  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-mhm 17267  df-submnd 17268  df-grp 17357  df-minusg 17358  df-sbg 17359  df-mulg 17473  df-subg 17523  df-ghm 17590  df-cntz 17682  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-srg 18438  df-ring 18481  df-cring 18482  df-rnghom 18647  df-subrg 18710  df-lmod 18797  df-lss 18865  df-lsp 18904  df-assa 19244  df-asp 19245  df-ascl 19246  df-psr 19288  df-mvr 19289  df-mpl 19290  df-opsr 19292  df-evls 19438  df-evl 19439  df-psr1 19482  df-ply1 19484  df-evl1 19613
This theorem is referenced by:  evl1gsumaddval  19655
  Copyright terms: Public domain W3C validator