MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumdlem Structured version   Visualization version   GIF version

Theorem evl1gsumdlem 20447
Description: Lemma for evl1gsumd 20448 (induction step). (Contributed by AV, 17-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumd.q 𝑂 = (eval1𝑅)
evl1gsumd.p 𝑃 = (Poly1𝑅)
evl1gsumd.b 𝐵 = (Base‘𝑅)
evl1gsumd.u 𝑈 = (Base‘𝑃)
evl1gsumd.r (𝜑𝑅 ∈ CRing)
evl1gsumd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evl1gsumdlem ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑈   𝑥,𝑌   𝑥,𝑎   𝑥,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑎)   𝐵(𝑥,𝑚,𝑎)   𝑃(𝑥,𝑚,𝑎)   𝑅(𝑥,𝑚,𝑎)   𝑈(𝑚,𝑎)   𝑀(𝑥,𝑚,𝑎)   𝑂(𝑚,𝑎)   𝑌(𝑚,𝑎)

Proof of Theorem evl1gsumdlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ralunb 4164 . . 3 (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 ↔ (∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈))
2 nfcv 2974 . . . . . . . . . . . . . . . . 17 𝑦𝑀
3 nfcsb1v 3904 . . . . . . . . . . . . . . . . 17 𝑥𝑦 / 𝑥𝑀
4 csbeq1a 3894 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦𝑀 = 𝑦 / 𝑥𝑀)
52, 3, 4cbvmpt 5158 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)
65oveq2i 7156 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀))
7 evl1gsumd.u . . . . . . . . . . . . . . . 16 𝑈 = (Base‘𝑃)
8 eqid 2818 . . . . . . . . . . . . . . . 16 (+g𝑃) = (+g𝑃)
9 evl1gsumd.r . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑅 ∈ CRing)
10 crngring 19237 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 ∈ Ring)
12 evl1gsumd.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (Poly1𝑅)
1312ply1ring 20344 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
1411, 13syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ Ring)
15 ringcmn 19260 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
1614, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ CMnd)
17163ad2ant3 1127 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑃 ∈ CMnd)
1817ad2antrr 722 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑃 ∈ CMnd)
19 simpll1 1204 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑚 ∈ Fin)
20 rspcsbela 4384 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑚 ∧ ∀𝑥𝑚 𝑀𝑈) → 𝑦 / 𝑥𝑀𝑈)
2120expcom 414 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑚 𝑀𝑈 → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2221adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2322adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑦𝑚𝑦 / 𝑥𝑀𝑈))
2423imp 407 . . . . . . . . . . . . . . . 16 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥𝑀𝑈)
25 vex 3495 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2625a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 ∈ V)
27 simpll2 1205 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ¬ 𝑎𝑚)
28 vsnid 4592 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ {𝑎}
29 rspcsbela 4384 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ {𝑎} ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
3028, 29mpan 686 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {𝑎}𝑀𝑈𝑎 / 𝑥𝑀𝑈)
3130adantl 482 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑎 / 𝑥𝑀𝑈)
32 csbeq1 3883 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎𝑦 / 𝑥𝑀 = 𝑎 / 𝑥𝑀)
337, 8, 18, 19, 24, 26, 27, 31, 32gsumunsn 19009 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
346, 33syl5eq 2865 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
352, 3, 4cbvmpt 5158 . . . . . . . . . . . . . . . . 17 (𝑥𝑚𝑀) = (𝑦𝑚𝑦 / 𝑥𝑀)
3635eqcomi 2827 . . . . . . . . . . . . . . . 16 (𝑦𝑚𝑦 / 𝑥𝑀) = (𝑥𝑚𝑀)
3736oveq2i 7156 . . . . . . . . . . . . . . 15 (𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀)) = (𝑃 Σg (𝑥𝑚𝑀))
3837oveq1i 7155 . . . . . . . . . . . . . 14 ((𝑃 Σg (𝑦𝑚𝑦 / 𝑥𝑀))(+g𝑃)𝑎 / 𝑥𝑀) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)
3934, 38syl6eq 2869 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)) = ((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))
4039fveq2d 6667 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀))) = (𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀)))
4140fveq1d 6665 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌))
42 evl1gsumd.q . . . . . . . . . . . . 13 𝑂 = (eval1𝑅)
43 evl1gsumd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑅)
4493ad2ant3 1127 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CRing)
4544ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CRing)
46 evl1gsumd.y . . . . . . . . . . . . . . 15 (𝜑𝑌𝐵)
47463ad2ant3 1127 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑌𝐵)
4847ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑌𝐵)
49 simplr 765 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ∀𝑥𝑚 𝑀𝑈)
507, 18, 19, 49gsummptcl 19016 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈)
51 eqidd 2819 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌))
5250, 51jca 512 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑃 Σg (𝑥𝑚𝑀)) ∈ 𝑈 ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)))
53 eqidd 2819 . . . . . . . . . . . . . 14 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
5431, 53jca 512 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑎 / 𝑥𝑀𝑈 ∧ ((𝑂𝑎 / 𝑥𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
55 eqid 2818 . . . . . . . . . . . . 13 (+g𝑅) = (+g𝑅)
5642, 12, 43, 7, 45, 48, 52, 54, 8, 55evl1addd 20432 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀) ∈ 𝑈 ∧ ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))))
5756simprd 496 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘((𝑃 Σg (𝑥𝑚𝑀))(+g𝑃)𝑎 / 𝑥𝑀))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
5841, 57eqtrd 2853 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
59 oveq1 7152 . . . . . . . . . 10 (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌)(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
6058, 59sylan9eq 2873 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
61 nfcv 2974 . . . . . . . . . . . . . 14 𝑦((𝑂𝑀)‘𝑌)
62 nfcsb1v 3904 . . . . . . . . . . . . . 14 𝑥𝑦 / 𝑥((𝑂𝑀)‘𝑌)
63 csbeq1a 3894 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑂𝑀)‘𝑌) = 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6461, 62, 63cbvmpt 5158 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)) = (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))
6564oveq2i 7156 . . . . . . . . . . . 12 (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌)))
66 ringcmn 19260 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
6711, 66syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ CMnd)
68673ad2ant3 1127 . . . . . . . . . . . . . 14 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → 𝑅 ∈ CMnd)
6968ad2antrr 722 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → 𝑅 ∈ CMnd)
70 csbfv12 6706 . . . . . . . . . . . . . . 15 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌)
71 csbfv2g 6707 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀))
7271elv 3497 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥(𝑂𝑀) = (𝑂𝑦 / 𝑥𝑀)
73 csbconstg 3899 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → 𝑦 / 𝑥𝑌 = 𝑌)
7473elv 3497 . . . . . . . . . . . . . . . 16 𝑦 / 𝑥𝑌 = 𝑌
7572, 74fveq12i 6669 . . . . . . . . . . . . . . 15 (𝑦 / 𝑥(𝑂𝑀)‘𝑦 / 𝑥𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7670, 75eqtri 2841 . . . . . . . . . . . . . 14 𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑦 / 𝑥𝑀)‘𝑌)
7745adantr 481 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑅 ∈ CRing)
7848adantr 481 . . . . . . . . . . . . . . 15 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑌𝐵)
7942, 12, 43, 7, 77, 78, 24fveval1fvcl 20424 . . . . . . . . . . . . . 14 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → ((𝑂𝑦 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
8076, 79eqeltrid 2914 . . . . . . . . . . . . 13 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ 𝑦𝑚) → 𝑦 / 𝑥((𝑂𝑀)‘𝑌) ∈ 𝐵)
8142, 12, 43, 7, 45, 48, 31fveval1fvcl 20424 . . . . . . . . . . . . 13 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂𝑎 / 𝑥𝑀)‘𝑌) ∈ 𝐵)
82 nfcv 2974 . . . . . . . . . . . . . 14 𝑥𝑎
83 nfcv 2974 . . . . . . . . . . . . . . . 16 𝑥𝑂
84 nfcsb1v 3904 . . . . . . . . . . . . . . . 16 𝑥𝑎 / 𝑥𝑀
8583, 84nffv 6673 . . . . . . . . . . . . . . 15 𝑥(𝑂𝑎 / 𝑥𝑀)
86 nfcv 2974 . . . . . . . . . . . . . . 15 𝑥𝑌
8785, 86nffv 6673 . . . . . . . . . . . . . 14 𝑥((𝑂𝑎 / 𝑥𝑀)‘𝑌)
88 csbeq1a 3894 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑀 = 𝑎 / 𝑥𝑀)
8988fveq2d 6667 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (𝑂𝑀) = (𝑂𝑎 / 𝑥𝑀))
9089fveq1d 6665 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → ((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9182, 87, 90csbhypf 3908 . . . . . . . . . . . . 13 (𝑦 = 𝑎𝑦 / 𝑥((𝑂𝑀)‘𝑌) = ((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9243, 55, 69, 19, 80, 26, 27, 81, 91gsumunsn 19009 . . . . . . . . . . . 12 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑦 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9365, 92syl5eq 2865 . . . . . . . . . . 11 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))) = ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)))
9461, 62, 63cbvmpt 5158 . . . . . . . . . . . . . 14 (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)) = (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))
9594eqcomi 2827 . . . . . . . . . . . . 13 (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)) = (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))
9695oveq2i 7156 . . . . . . . . . . . 12 (𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌))) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))
9796oveq1i 7155 . . . . . . . . . . 11 ((𝑅 Σg (𝑦𝑚𝑦 / 𝑥((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌))
9893, 97syl6req 2870 . . . . . . . . . 10 ((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
9998adantr 481 . . . . . . . . 9 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))(+g𝑅)((𝑂𝑎 / 𝑥𝑀)‘𝑌)) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
10060, 99eqtrd 2853 . . . . . . . 8 (((((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) ∧ ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))
101100exp31 420 . . . . . . 7 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
102101com23 86 . . . . . 6 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ ∀𝑥𝑚 𝑀𝑈) → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
103102ex 413 . . . . 5 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → (∀𝑥𝑚 𝑀𝑈 → (((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))) → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
104103a2d 29 . . . 4 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥𝑚 𝑀𝑈 → (∀𝑥 ∈ {𝑎}𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))))
105104imp4b 422 . . 3 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → ((∀𝑥𝑚 𝑀𝑈 ∧ ∀𝑥 ∈ {𝑎}𝑀𝑈) → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
1061, 105syl5bi 243 . 2 (((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) ∧ (∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌))))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌)))))
107106ex 413 1 ((𝑚 ∈ Fin ∧ ¬ 𝑎𝑚𝜑) → ((∀𝑥𝑚 𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥𝑚𝑀)))‘𝑌) = (𝑅 Σg (𝑥𝑚 ↦ ((𝑂𝑀)‘𝑌)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀𝑈 → ((𝑂‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝑌) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((𝑂𝑀)‘𝑌))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  csb 3880  cun 3931  {csn 4557  cmpt 5137  cfv 6348  (class class class)co 7145  Fincfn 8497  Basecbs 16471  +gcplusg 16553   Σg cgsu 16702  CMndccmn 18835  Ringcrg 19226  CRingccrg 19227  Poly1cpl1 20273  eval1ce1 20405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-0g 16703  df-gsum 16704  df-prds 16709  df-pws 16711  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-srg 19185  df-ring 19228  df-cring 19229  df-rnghom 19396  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-assa 20013  df-asp 20014  df-ascl 20015  df-psr 20064  df-mvr 20065  df-mpl 20066  df-opsr 20068  df-evls 20214  df-evl 20215  df-psr1 20276  df-ply1 20278  df-evl1 20407
This theorem is referenced by:  evl1gsumd  20448
  Copyright terms: Public domain W3C validator