![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1varpw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 19770, the proof is shorter using evls1varpw 19739 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
evl1varpw | ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1varpw.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 19743 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐵)) |
5 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
6 | evl1varpw.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
7 | evl1varpw.w | . . . . . . . . 9 ⊢ 𝑊 = (Poly1‘𝑅) | |
8 | 7 | fveq2i 6232 | . . . . . . . 8 ⊢ (mulGrp‘𝑊) = (mulGrp‘(Poly1‘𝑅)) |
9 | 6, 8 | eqtri 2673 | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘(Poly1‘𝑅)) |
10 | 9 | fveq2i 6232 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘(mulGrp‘(Poly1‘𝑅))) |
11 | 5, 10 | eqtri 2673 | . . . . 5 ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝑅))) |
12 | evl1varpw.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 2 | ressid 15982 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑅 ↾s 𝐵) = 𝑅) |
15 | 14 | eqcomd 2657 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐵)) |
16 | 15 | fveq2d 6233 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐵))) |
17 | 16 | fveq2d 6233 | . . . . . 6 ⊢ (𝜑 → (mulGrp‘(Poly1‘𝑅)) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) |
18 | 17 | fveq2d 6233 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(Poly1‘𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
19 | 11, 18 | syl5eq 2697 | . . . 4 ⊢ (𝜑 → ↑ = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
20 | eqidd 2652 | . . . 4 ⊢ (𝜑 → 𝑁 = 𝑁) | |
21 | evl1varpw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
22 | 15 | fveq2d 6233 | . . . . 5 ⊢ (𝜑 → (var1‘𝑅) = (var1‘(𝑅 ↾s 𝐵))) |
23 | 21, 22 | syl5eq 2697 | . . . 4 ⊢ (𝜑 → 𝑋 = (var1‘(𝑅 ↾s 𝐵))) |
24 | 19, 20, 23 | oveq123d 6711 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) |
25 | 4, 24 | fveq12d 6235 | . 2 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵))))) |
26 | eqid 2651 | . . 3 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
27 | eqid 2651 | . . 3 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
28 | eqid 2651 | . . 3 ⊢ (Poly1‘(𝑅 ↾s 𝐵)) = (Poly1‘(𝑅 ↾s 𝐵)) | |
29 | eqid 2651 | . . 3 ⊢ (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) | |
30 | eqid 2651 | . . 3 ⊢ (var1‘(𝑅 ↾s 𝐵)) = (var1‘(𝑅 ↾s 𝐵)) | |
31 | eqid 2651 | . . 3 ⊢ (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) | |
32 | crngring 18604 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
33 | 2 | subrgid 18830 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 12, 32, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
35 | evl1varpw.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
36 | 26, 27, 28, 29, 30, 2, 31, 12, 34, 35 | evls1varpw 19739 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))))) |
37 | 3 | eqcomi 2660 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = 𝑄 |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄) |
39 | 23 | eqcomd 2657 | . . . 4 ⊢ (𝜑 → (var1‘(𝑅 ↾s 𝐵)) = 𝑋) |
40 | 38, 39 | fveq12d 6235 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))) = (𝑄‘𝑋)) |
41 | 40 | oveq2d 6706 | . 2 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
42 | 25, 36, 41 | 3eqtrd 2689 | 1 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 ℕ0cn0 11330 Basecbs 15904 ↾s cress 15905 ↑s cpws 16154 .gcmg 17587 mulGrpcmgp 18535 Ringcrg 18593 CRingccrg 18594 SubRingcsubrg 18824 var1cv1 19594 Poly1cpl1 19595 evalSub1 ces1 19726 eval1ce1 19727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-srg 18552 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-assa 19360 df-asp 19361 df-ascl 19362 df-psr 19404 df-mvr 19405 df-mpl 19406 df-opsr 19408 df-evls 19554 df-evl 19555 df-psr1 19598 df-vr1 19599 df-ply1 19600 df-evls1 19728 df-evl1 19729 |
This theorem is referenced by: evl1scvarpw 19775 |
Copyright terms: Public domain | W3C validator |