MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1varpw Structured version   Visualization version   GIF version

Theorem evl1varpw 19773
Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 19770, the proof is shorter using evls1varpw 19739 instead of proving it directly. (Contributed by AV, 15-Sep-2019.)
Hypotheses
Ref Expression
evl1varpw.q 𝑄 = (eval1𝑅)
evl1varpw.w 𝑊 = (Poly1𝑅)
evl1varpw.g 𝐺 = (mulGrp‘𝑊)
evl1varpw.x 𝑋 = (var1𝑅)
evl1varpw.b 𝐵 = (Base‘𝑅)
evl1varpw.e = (.g𝐺)
evl1varpw.r (𝜑𝑅 ∈ CRing)
evl1varpw.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1varpw (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))

Proof of Theorem evl1varpw
StepHypRef Expression
1 evl1varpw.q . . . . 5 𝑄 = (eval1𝑅)
2 evl1varpw.b . . . . 5 𝐵 = (Base‘𝑅)
31, 2evl1fval1 19743 . . . 4 𝑄 = (𝑅 evalSub1 𝐵)
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 evalSub1 𝐵))
5 evl1varpw.e . . . . . 6 = (.g𝐺)
6 evl1varpw.g . . . . . . . 8 𝐺 = (mulGrp‘𝑊)
7 evl1varpw.w . . . . . . . . 9 𝑊 = (Poly1𝑅)
87fveq2i 6232 . . . . . . . 8 (mulGrp‘𝑊) = (mulGrp‘(Poly1𝑅))
96, 8eqtri 2673 . . . . . . 7 𝐺 = (mulGrp‘(Poly1𝑅))
109fveq2i 6232 . . . . . 6 (.g𝐺) = (.g‘(mulGrp‘(Poly1𝑅)))
115, 10eqtri 2673 . . . . 5 = (.g‘(mulGrp‘(Poly1𝑅)))
12 evl1varpw.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
132ressid 15982 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑅s 𝐵) = 𝑅)
1514eqcomd 2657 . . . . . . . 8 (𝜑𝑅 = (𝑅s 𝐵))
1615fveq2d 6233 . . . . . . 7 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s 𝐵)))
1716fveq2d 6233 . . . . . 6 (𝜑 → (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1‘(𝑅s 𝐵))))
1817fveq2d 6233 . . . . 5 (𝜑 → (.g‘(mulGrp‘(Poly1𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))))
1911, 18syl5eq 2697 . . . 4 (𝜑 = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))))
20 eqidd 2652 . . . 4 (𝜑𝑁 = 𝑁)
21 evl1varpw.x . . . . 5 𝑋 = (var1𝑅)
2215fveq2d 6233 . . . . 5 (𝜑 → (var1𝑅) = (var1‘(𝑅s 𝐵)))
2321, 22syl5eq 2697 . . . 4 (𝜑𝑋 = (var1‘(𝑅s 𝐵)))
2419, 20, 23oveq123d 6711 . . 3 (𝜑 → (𝑁 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵))))
254, 24fveq12d 6235 . 2 (𝜑 → (𝑄‘(𝑁 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵)))))
26 eqid 2651 . . 3 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
27 eqid 2651 . . 3 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2651 . . 3 (Poly1‘(𝑅s 𝐵)) = (Poly1‘(𝑅s 𝐵))
29 eqid 2651 . . 3 (mulGrp‘(Poly1‘(𝑅s 𝐵))) = (mulGrp‘(Poly1‘(𝑅s 𝐵)))
30 eqid 2651 . . 3 (var1‘(𝑅s 𝐵)) = (var1‘(𝑅s 𝐵))
31 eqid 2651 . . 3 (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))
32 crngring 18604 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
332subrgid 18830 . . . 4 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
3412, 32, 333syl 18 . . 3 (𝜑𝐵 ∈ (SubRing‘𝑅))
35 evl1varpw.n . . 3 (𝜑𝑁 ∈ ℕ0)
3626, 27, 28, 29, 30, 2, 31, 12, 34, 35evls1varpw 19739 . 2 (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵)))))
373eqcomi 2660 . . . . 5 (𝑅 evalSub1 𝐵) = 𝑄
3837a1i 11 . . . 4 (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄)
3923eqcomd 2657 . . . 4 (𝜑 → (var1‘(𝑅s 𝐵)) = 𝑋)
4038, 39fveq12d 6235 . . 3 (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵))) = (𝑄𝑋))
4140oveq2d 6706 . 2 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))
4225, 36, 413eqtrd 2689 1 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690  0cn0 11330  Basecbs 15904  s cress 15905  s cpws 16154  .gcmg 17587  mulGrpcmgp 18535  Ringcrg 18593  CRingccrg 18594  SubRingcsubrg 18824  var1cv1 19594  Poly1cpl1 19595   evalSub1 ces1 19726  eval1ce1 19727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-assa 19360  df-asp 19361  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-evls 19554  df-evl 19555  df-psr1 19598  df-vr1 19599  df-ply1 19600  df-evls1 19728  df-evl1 19729
This theorem is referenced by:  evl1scvarpw  19775
  Copyright terms: Public domain W3C validator