MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlfcl Structured version   Visualization version   GIF version

Theorem evlfcl 16790
Description: The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfcl.e 𝐸 = (𝐶 evalF 𝐷)
evlfcl.q 𝑄 = (𝐶 FuncCat 𝐷)
evlfcl.c (𝜑𝐶 ∈ Cat)
evlfcl.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
evlfcl (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))

Proof of Theorem evlfcl
Dummy variables 𝑓 𝑎 𝑔 𝑚 𝑛 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlfcl.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
2 evlfcl.c . . . . 5 (𝜑𝐶 ∈ Cat)
3 evlfcl.d . . . . 5 (𝜑𝐷 ∈ Cat)
4 eqid 2621 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2621 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2621 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2621 . . . . 5 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 16785 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 6638 . . . . . 6 (𝐶 Func 𝐷) ∈ V
10 fvex 6163 . . . . . 6 (Base‘𝐶) ∈ V
119, 10mpt2ex 7199 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) ∈ V
129, 10xpex 6922 . . . . . 6 ((𝐶 Func 𝐷) × (Base‘𝐶)) ∈ V
1312, 12mpt2ex 7199 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1411, 13opelvv 5131 . . . 4 ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ ∈ (V × V)
158, 14syl6eqel 2706 . . 3 (𝜑𝐸 ∈ (V × V))
16 1st2nd2 7157 . . 3 (𝐸 ∈ (V × V) → 𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
1715, 16syl 17 . 2 (𝜑𝐸 = ⟨(1st𝐸), (2nd𝐸)⟩)
18 eqid 2621 . . . . 5 (𝑄 ×c 𝐶) = (𝑄 ×c 𝐶)
19 evlfcl.q . . . . . 6 𝑄 = (𝐶 FuncCat 𝐷)
2019fucbas 16548 . . . . 5 (𝐶 Func 𝐷) = (Base‘𝑄)
2118, 20, 4xpcbas 16746 . . . 4 ((𝐶 Func 𝐷) × (Base‘𝐶)) = (Base‘(𝑄 ×c 𝐶))
22 eqid 2621 . . . 4 (Base‘𝐷) = (Base‘𝐷)
23 eqid 2621 . . . 4 (Hom ‘(𝑄 ×c 𝐶)) = (Hom ‘(𝑄 ×c 𝐶))
24 eqid 2621 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
25 eqid 2621 . . . 4 (Id‘(𝑄 ×c 𝐶)) = (Id‘(𝑄 ×c 𝐶))
26 eqid 2621 . . . 4 (Id‘𝐷) = (Id‘𝐷)
27 eqid 2621 . . . 4 (comp‘(𝑄 ×c 𝐶)) = (comp‘(𝑄 ×c 𝐶))
2819, 2, 3fuccat 16558 . . . . 5 (𝜑𝑄 ∈ Cat)
2918, 28, 2xpccat 16758 . . . 4 (𝜑 → (𝑄 ×c 𝐶) ∈ Cat)
30 relfunc 16450 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
31 simpr 477 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 7169 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
3330, 31, 32sylancr 694 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
344, 22, 33funcf1 16454 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
3534ffvelrnda 6320 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐶 Func 𝐷)) ∧ 𝑥 ∈ (Base‘𝐶)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3635ralrimiva 2961 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
3736ralrimiva 2961 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷))
38 eqid 2621 . . . . . . 7 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥))
3938fmpt2 7189 . . . . . 6 (∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑥 ∈ (Base‘𝐶)((1st𝑓)‘𝑥) ∈ (Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4037, 39sylib 208 . . . . 5 (𝜑 → (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
4111, 13op1std 7130 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
428, 41syl 17 . . . . . 6 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)))
4342feq1d 5992 . . . . 5 (𝜑 → ((1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷) ↔ (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷)))
4440, 43mpbird 247 . . . 4 (𝜑 → (1st𝐸):((𝐶 Func 𝐷) × (Base‘𝐶))⟶(Base‘𝐷))
45 eqid 2621 . . . . . 6 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))
46 ovex 6638 . . . . . . . . 9 (𝑚(𝐶 Nat 𝐷)𝑛) ∈ V
47 ovex 6638 . . . . . . . . 9 ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ∈ V
4846, 47mpt2ex 7199 . . . . . . . 8 (𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
4948csbex 4758 . . . . . . 7 (1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5049csbex 4758 . . . . . 6 (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) ∈ V
5145, 50fnmpt2i 7191 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))
5211, 13op2ndd 7131 . . . . . . 7 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (Base‘𝐶) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
538, 52syl 17 . . . . . 6 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
5453fneq1d 5944 . . . . 5 (𝜑 → ((2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))) ↔ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)), 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶)))))
5551, 54mpbiri 248 . . . 4 (𝜑 → (2nd𝐸) Fn (((𝐶 Func 𝐷) × (Base‘𝐶)) × ((𝐶 Func 𝐷) × (Base‘𝐶))))
563ad2antrr 761 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
5756adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝐷 ∈ Cat)
58 simplrl 799 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
5930, 58, 32sylancr 694 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
604, 22, 59funcf1 16454 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
6160adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
62 simplrr 800 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
6362adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑢 ∈ (Base‘𝐶))
6461, 63ffvelrnd 6321 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
65 simplrr 800 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑣 ∈ (Base‘𝐶))
6661, 65ffvelrnd 6321 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑓)‘𝑣) ∈ (Base‘𝐷))
67 simprl 793 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑔 ∈ (𝐶 Func 𝐷))
68 1st2ndbr 7169 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
6930, 67, 68sylancr 694 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔)(𝐶 Func 𝐷)(2nd𝑔))
704, 22, 69funcf1 16454 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7170adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (1st𝑔):(Base‘𝐶)⟶(Base‘𝐷))
7271, 65ffvelrnd 6321 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((1st𝑔)‘𝑣) ∈ (Base‘𝐷))
73 simprr 795 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝑣 ∈ (Base‘𝐶))
744, 5, 24, 59, 62, 73funcf2 16456 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
7574adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑢(2nd𝑓)𝑣):(𝑢(Hom ‘𝐶)𝑣)⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
76 simprr 795 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ∈ (𝑢(Hom ‘𝐶)𝑣))
7775, 76ffvelrnd 6321 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑢(2nd𝑓)𝑣)‘) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑣)))
78 simprl 793 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔))
797, 78nat1st2nd 16539 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐶 Nat 𝐷)⟨(1st𝑔), (2nd𝑔)⟩))
807, 79, 4, 24, 65natcl 16541 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → (𝑎𝑣) ∈ (((1st𝑓)‘𝑣)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8122, 24, 6, 57, 64, 66, 72, 77, 80catcocl 16274 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) ∧ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔) ∧ ∈ (𝑢(Hom ‘𝐶)𝑣))) → ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8281ralrimivva 2966 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
83 eqid 2621 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)))
8483fmpt2 7189 . . . . . . . . . . . . 13 (∀𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔)∀ ∈ (𝑢(Hom ‘𝐶)𝑣)((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
8582, 84sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
862ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
87 eqid 2621 . . . . . . . . . . . . . 14 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩)
881, 86, 56, 4, 5, 6, 7, 58, 67, 62, 73, 87evlf2 16786 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩) = (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))))
8988feq1d 5992 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)) ↔ (𝑎 ∈ (𝑓(𝐶 Nat 𝐷)𝑔), ∈ (𝑢(Hom ‘𝐶)𝑣) ↦ ((𝑎𝑣)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑣)⟩(comp‘𝐷)((1st𝑔)‘𝑣))((𝑢(2nd𝑓)𝑣)‘))):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9085, 89mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9119, 7fuchom 16549 . . . . . . . . . . . . 13 (𝐶 Nat 𝐷) = (Hom ‘𝑄)
9218, 20, 4, 91, 5, 58, 62, 67, 73, 23xpchom2 16754 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = ((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣)))
931, 86, 56, 4, 58, 62evlf1 16788 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
941, 86, 56, 4, 67, 73evlf1 16788 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (𝑔(1st𝐸)𝑣) = ((1st𝑔)‘𝑣))
9593, 94oveq12d 6628 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣)))
9692, 95feq23d 6002 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):((𝑓(𝐶 Nat 𝐷)𝑔) × (𝑢(Hom ‘𝐶)𝑣))⟶(((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑔)‘𝑣))))
9790, 96mpbird 247 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) ∧ (𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑣 ∈ (Base‘𝐶))) → (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9897ralrimivva 2966 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
9998ralrimivva 2966 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
100 oveq2 6618 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(2nd𝐸)𝑦) = (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩))
101 oveq2 6618 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
102 fveq2 6153 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨𝑔, 𝑣⟩))
103 df-ov 6613 . . . . . . . . . . . . . 14 (𝑔(1st𝐸)𝑣) = ((1st𝐸)‘⟨𝑔, 𝑣⟩)
104102, 103syl6eqr 2673 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑔, 𝑣⟩ → ((1st𝐸)‘𝑦) = (𝑔(1st𝐸)𝑣))
105104oveq2d 6626 . . . . . . . . . . . 12 (𝑦 = ⟨𝑔, 𝑣⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) = (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
106100, 101, 105feq123d 5996 . . . . . . . . . . 11 (𝑦 = ⟨𝑔, 𝑣⟩ → ((𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
107106ralxp 5228 . . . . . . . . . 10 (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
108 oveq1 6617 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩))
109 oveq1 6617 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩) = (⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩))
110 fveq2 6153 . . . . . . . . . . . . . 14 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨𝑓, 𝑢⟩))
111 df-ov 6613 . . . . . . . . . . . . . 14 (𝑓(1st𝐸)𝑢) = ((1st𝐸)‘⟨𝑓, 𝑢⟩)
112110, 111syl6eqr 2673 . . . . . . . . . . . . 13 (𝑥 = ⟨𝑓, 𝑢⟩ → ((1st𝐸)‘𝑥) = (𝑓(1st𝐸)𝑢))
113112oveq1d 6625 . . . . . . . . . . . 12 (𝑥 = ⟨𝑓, 𝑢⟩ → (((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) = ((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
114108, 109, 113feq123d 5996 . . . . . . . . . . 11 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
1151142ralbidv 2984 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(𝑥(2nd𝐸)⟨𝑔, 𝑣⟩):(𝑥(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
116107, 115syl5bb 272 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣))))
117116ralxp 5228 . . . . . . . 8 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)∀𝑔 ∈ (𝐶 Func 𝐷)∀𝑣 ∈ (Base‘𝐶)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑔, 𝑣⟩):(⟨𝑓, 𝑢⟩(Hom ‘(𝑄 ×c 𝐶))⟨𝑔, 𝑣⟩)⟶((𝑓(1st𝐸)𝑢)(Hom ‘𝐷)(𝑔(1st𝐸)𝑣)))
11899, 117sylibr 224 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
119118r19.21bi 2927 . . . . . 6 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ∀𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))(𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
120119r19.21bi 2927 . . . . 5 (((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
121120anasss 678 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))) → (𝑥(2nd𝐸)𝑦):(𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦)⟶(((1st𝐸)‘𝑥)(Hom ‘𝐷)((1st𝐸)‘𝑦)))
12228adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑄 ∈ Cat)
1232adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
124 eqid 2621 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
125 eqid 2621 . . . . . . . . . . 11 (Id‘𝐶) = (Id‘𝐶)
126 simprl 793 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑓 ∈ (𝐶 Func 𝐷))
127 simprr 795 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝑢 ∈ (Base‘𝐶))
12818, 122, 123, 20, 4, 124, 125, 25, 126, 127xpcid 16757 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩) = ⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
129128fveq2d 6157 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩))
130 df-ov 6613 . . . . . . . . 9 (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘⟨((Id‘𝑄)‘𝑓), ((Id‘𝐶)‘𝑢)⟩)
131129, 130syl6eqr 2673 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)))
1323adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → 𝐷 ∈ Cat)
133 eqid 2621 . . . . . . . . 9 (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)
13420, 91, 124, 122, 126catidcl 16271 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) ∈ (𝑓(𝐶 Nat 𝐷)𝑓))
1354, 5, 125, 123, 127catidcl 16271 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐶)‘𝑢) ∈ (𝑢(Hom ‘𝐶)𝑢))
1361, 123, 132, 4, 5, 6, 7, 126, 126, 127, 127, 133, 134, 135evlf2val 16787 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)(⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)((Id‘𝐶)‘𝑢)) = ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))))
13730, 126, 32sylancr 694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓)(𝐶 Func 𝐷)(2nd𝑓))
1384, 22, 137funcf1 16454 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (1st𝑓):(Base‘𝐶)⟶(Base‘𝐷))
139138, 127ffvelrnd 6321 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((1st𝑓)‘𝑢) ∈ (Base‘𝐷))
14022, 24, 26, 132, 139catidcl 16271 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘((1st𝑓)‘𝑢)) ∈ (((1st𝑓)‘𝑢)(Hom ‘𝐷)((1st𝑓)‘𝑢)))
14122, 24, 26, 132, 139, 6, 139, 140catlid 16272 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
14219, 124, 26, 126fucid 16559 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝑄)‘𝑓) = ((Id‘𝐷) ∘ (1st𝑓)))
143142fveq1d 6155 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = (((Id‘𝐷) ∘ (1st𝑓))‘𝑢))
144 fvco3 6237 . . . . . . . . . . . 12 (((1st𝑓):(Base‘𝐶)⟶(Base‘𝐷) ∧ 𝑢 ∈ (Base‘𝐶)) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
145138, 127, 144syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝐷) ∘ (1st𝑓))‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
146143, 145eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (((Id‘𝑄)‘𝑓)‘𝑢) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
1474, 125, 26, 137, 127funcid 16458 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
148146, 147oveq12d 6628 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = (((Id‘𝐷)‘((1st𝑓)‘𝑢))(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((Id‘𝐷)‘((1st𝑓)‘𝑢))))
1491, 123, 132, 4, 126, 127evlf1 16788 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → (𝑓(1st𝐸)𝑢) = ((1st𝑓)‘𝑢))
150149fveq2d 6157 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)) = ((Id‘𝐷)‘((1st𝑓)‘𝑢)))
151141, 148, 1503eqtr4d 2665 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((((Id‘𝑄)‘𝑓)‘𝑢)(⟨((1st𝑓)‘𝑢), ((1st𝑓)‘𝑢)⟩(comp‘𝐷)((1st𝑓)‘𝑢))((𝑢(2nd𝑓)𝑢)‘((Id‘𝐶)‘𝑢))) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
152131, 136, 1513eqtrd 2659 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑢 ∈ (Base‘𝐶))) → ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
153152ralrimivva 2966 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
154 id 22 . . . . . . . . . 10 (𝑥 = ⟨𝑓, 𝑢⟩ → 𝑥 = ⟨𝑓, 𝑢⟩)
155154, 154oveq12d 6628 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → (𝑥(2nd𝐸)𝑥) = (⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩))
156 fveq2 6153 . . . . . . . . 9 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘(𝑄 ×c 𝐶))‘𝑥) = ((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩))
157155, 156fveq12d 6159 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)))
158112fveq2d 6157 . . . . . . . 8 (𝑥 = ⟨𝑓, 𝑢⟩ → ((Id‘𝐷)‘((1st𝐸)‘𝑥)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
159157, 158eqeq12d 2636 . . . . . . 7 (𝑥 = ⟨𝑓, 𝑢⟩ → (((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢))))
160159ralxp 5228 . . . . . 6 (∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)) ↔ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑢 ∈ (Base‘𝐶)((⟨𝑓, 𝑢⟩(2nd𝐸)⟨𝑓, 𝑢⟩)‘((Id‘(𝑄 ×c 𝐶))‘⟨𝑓, 𝑢⟩)) = ((Id‘𝐷)‘(𝑓(1st𝐸)𝑢)))
161153, 160sylibr 224 . . . . 5 (𝜑 → ∀𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
162161r19.21bi 2927 . . . 4 ((𝜑𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) → ((𝑥(2nd𝐸)𝑥)‘((Id‘(𝑄 ×c 𝐶))‘𝑥)) = ((Id‘𝐷)‘((1st𝐸)‘𝑥)))
16323ad2ant1 1080 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐶 ∈ Cat)
16433ad2ant1 1080 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝐷 ∈ Cat)
165 simp21 1092 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
166 1st2nd2 7157 . . . . . . . . 9 (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
167165, 166syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
168167, 165eqeltrrd 2699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
169 opelxp 5111 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
170168, 169sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑥) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑥) ∈ (Base‘𝐶)))
171 simp22 1093 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
172 1st2nd2 7157 . . . . . . . . 9 (𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
173171, 172syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
174173, 171eqeltrrd 2699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
175 opelxp 5111 . . . . . . 7 (⟨(1st𝑦), (2nd𝑦)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
176174, 175sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑦) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑦) ∈ (Base‘𝐶)))
177 simp23 1094 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
178 1st2nd2 7157 . . . . . . . . 9 (𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
179177, 178syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
180179, 177eqeltrrd 2699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)))
181 opelxp 5111 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ↔ ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
182180, 181sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑧) ∈ (𝐶 Func 𝐷) ∧ (2nd𝑧) ∈ (Base‘𝐶)))
183 simp3l 1087 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦))
18418, 21, 91, 5, 23, 165, 171xpchom 16748 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) = (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
185183, 184eleqtrd 2700 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
186 1st2nd2 7157 . . . . . . . . 9 (𝑓 ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
187185, 186syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑓 = ⟨(1st𝑓), (2nd𝑓)⟩)
188187, 185eqeltrrd 2699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
189 opelxp 5111 . . . . . . 7 (⟨(1st𝑓), (2nd𝑓)⟩ ∈ (((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) × ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))) ↔ ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
190188, 189sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑓) ∈ ((1st𝑥)(𝐶 Nat 𝐷)(1st𝑦)) ∧ (2nd𝑓) ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦))))
191 simp3r 1088 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))
19218, 21, 91, 5, 23, 171, 177xpchom 16748 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧) = (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
193191, 192eleqtrd 2700 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
194 1st2nd2 7157 . . . . . . . . 9 (𝑔 ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
195193, 194syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → 𝑔 = ⟨(1st𝑔), (2nd𝑔)⟩)
196195, 193eqeltrrd 2699 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
197 opelxp 5111 . . . . . . 7 (⟨(1st𝑔), (2nd𝑔)⟩ ∈ (((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) × ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))) ↔ ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
198196, 197sylib 208 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝑔) ∈ ((1st𝑦)(𝐶 Nat 𝐷)(1st𝑧)) ∧ (2nd𝑔) ∈ ((2nd𝑦)(Hom ‘𝐶)(2nd𝑧))))
1991, 19, 163, 164, 7, 170, 176, 182, 190, 198evlfcllem 16789 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
200167, 179oveq12d 6628 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑧) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
201167, 173opeq12d 4383 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨𝑥, 𝑦⟩ = ⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩)
202201, 179oveq12d 6628 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧) = (⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩))
203202, 195, 187oveq123d 6631 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓) = (⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩))
204200, 203fveq12d 6159 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘(⟨(1st𝑔), (2nd𝑔)⟩(⟨⟨(1st𝑥), (2nd𝑥)⟩, ⟨(1st𝑦), (2nd𝑦)⟩⟩(comp‘(𝑄 ×c 𝐶))⟨(1st𝑧), (2nd𝑧)⟩)⟨(1st𝑓), (2nd𝑓)⟩)))
205167fveq2d 6157 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑥) = ((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩))
206173fveq2d 6157 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑦) = ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩))
207205, 206opeq12d 4383 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩ = ⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩)
208179fveq2d 6157 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))
209207, 208oveq12d 6628 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧)) = (⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩)))
210173, 179oveq12d 6628 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑦(2nd𝐸)𝑧) = (⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩))
211210, 195fveq12d 6159 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑦(2nd𝐸)𝑧)‘𝑔) = ((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩))
212167, 173oveq12d 6628 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (𝑥(2nd𝐸)𝑦) = (⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩))
213212, 187fveq12d 6159 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑦)‘𝑓) = ((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩))
214209, 211, 213oveq123d 6631 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)) = (((⟨(1st𝑦), (2nd𝑦)⟩(2nd𝐸)⟨(1st𝑧), (2nd𝑧)⟩)‘⟨(1st𝑔), (2nd𝑔)⟩)(⟨((1st𝐸)‘⟨(1st𝑥), (2nd𝑥)⟩), ((1st𝐸)‘⟨(1st𝑦), (2nd𝑦)⟩)⟩(comp‘𝐷)((1st𝐸)‘⟨(1st𝑧), (2nd𝑧)⟩))((⟨(1st𝑥), (2nd𝑥)⟩(2nd𝐸)⟨(1st𝑦), (2nd𝑦)⟩)‘⟨(1st𝑓), (2nd𝑓)⟩)))
215199, 204, 2143eqtr4d 2665 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑦 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶)) ∧ 𝑧 ∈ ((𝐶 Func 𝐷) × (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘(𝑄 ×c 𝐶))𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘(𝑄 ×c 𝐶))𝑧))) → ((𝑥(2nd𝐸)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘(𝑄 ×c 𝐶))𝑧)𝑓)) = (((𝑦(2nd𝐸)𝑧)‘𝑔)(⟨((1st𝐸)‘𝑥), ((1st𝐸)‘𝑦)⟩(comp‘𝐷)((1st𝐸)‘𝑧))((𝑥(2nd𝐸)𝑦)‘𝑓)))
21621, 22, 23, 24, 25, 26, 27, 6, 29, 3, 44, 55, 121, 162, 215isfuncd 16453 . . 3 (𝜑 → (1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸))
217 df-br 4619 . . 3 ((1st𝐸)((𝑄 ×c 𝐶) Func 𝐷)(2nd𝐸) ↔ ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
218216, 217sylib 208 . 2 (𝜑 → ⟨(1st𝐸), (2nd𝐸)⟩ ∈ ((𝑄 ×c 𝐶) Func 𝐷))
21917, 218eqeltrd 2698 1 (𝜑𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  csb 3518  cop 4159   class class class wbr 4618   × cxp 5077  ccom 5083  Rel wrel 5084   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  1st c1st 7118  2nd c2nd 7119  Basecbs 15788  Hom chom 15880  compcco 15881  Catccat 16253  Idccid 16254   Func cfunc 16442   Nat cnat 16529   FuncCat cfuc 16530   ×c cxpc 16736   evalF cevlf 16777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-hom 15894  df-cco 15895  df-cat 16257  df-cid 16258  df-func 16446  df-nat 16531  df-fuc 16532  df-xpc 16740  df-evlf 16781
This theorem is referenced by:  uncfcl  16803  uncf1  16804  uncf2  16805  yonedalem1  16840
  Copyright terms: Public domain W3C validator