MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlssca Structured version   Visualization version   GIF version

Theorem evlssca 20304
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlssca.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlssca.w 𝑊 = (𝐼 mPoly 𝑈)
evlssca.u 𝑈 = (𝑆s 𝑅)
evlssca.b 𝐵 = (Base‘𝑆)
evlssca.a 𝐴 = (algSc‘𝑊)
evlssca.i (𝜑𝐼𝑉)
evlssca.s (𝜑𝑆 ∈ CRing)
evlssca.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlssca.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evlssca (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))

Proof of Theorem evlssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlssca.i . . . . 5 (𝜑𝐼𝑉)
2 evlssca.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlssca.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlssca.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlssca.w . . . . . 6 𝑊 = (𝐼 mPoly 𝑈)
6 eqid 2823 . . . . . 6 (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈)
7 evlssca.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2823 . . . . . 6 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
9 evlssca.b . . . . . 6 𝐵 = (Base‘𝑆)
10 evlssca.a . . . . . 6 𝐴 = (algSc‘𝑊)
11 eqid 2823 . . . . . 6 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
12 eqid 2823 . . . . . 6 (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 20302 . . . . 5 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
141, 2, 3, 13syl3anc 1367 . . . 4 (𝜑 → (𝑄 ∈ (𝑊 RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄 ∘ (𝐼 mVar 𝑈)) = (𝑥𝐼 ↦ (𝑦 ∈ (𝐵m 𝐼) ↦ (𝑦𝑥))))))
1514simprld 770 . . 3 (𝜑 → (𝑄𝐴) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})))
1615fveq1d 6674 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋))
17 eqid 2823 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
18 eqid 2823 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
197subrgring 19540 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
203, 19syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
215, 17, 18, 10, 1, 20mplasclf 20279 . . . 4 (𝜑𝐴:(Base‘𝑈)⟶(Base‘𝑊))
229subrgss 19538 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
237, 9ressbas2 16557 . . . . . 6 (𝑅𝐵𝑅 = (Base‘𝑈))
243, 22, 233syl 18 . . . . 5 (𝜑𝑅 = (Base‘𝑈))
2524feq2d 6502 . . . 4 (𝜑 → (𝐴:𝑅⟶(Base‘𝑊) ↔ 𝐴:(Base‘𝑈)⟶(Base‘𝑊)))
2621, 25mpbird 259 . . 3 (𝜑𝐴:𝑅⟶(Base‘𝑊))
27 evlssca.x . . 3 (𝜑𝑋𝑅)
28 fvco3 6762 . . 3 ((𝐴:𝑅⟶(Base‘𝑊) ∧ 𝑋𝑅) → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
2926, 27, 28syl2anc 586 . 2 (𝜑 → ((𝑄𝐴)‘𝑋) = (𝑄‘(𝐴𝑋)))
30 sneq 4579 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
3130xpeq2d 5587 . . . 4 (𝑥 = 𝑋 → ((𝐵m 𝐼) × {𝑥}) = ((𝐵m 𝐼) × {𝑋}))
32 ovex 7191 . . . . 5 (𝐵m 𝐼) ∈ V
33 snex 5334 . . . . 5 {𝑋} ∈ V
3432, 33xpex 7478 . . . 4 ((𝐵m 𝐼) × {𝑋}) ∈ V
3531, 11, 34fvmpt 6770 . . 3 (𝑋𝑅 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3627, 35syl 17 . 2 (𝜑 → ((𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))‘𝑋) = ((𝐵m 𝐼) × {𝑋}))
3716, 29, 363eqtr3d 2866 1 (𝜑 → (𝑄‘(𝐴𝑋)) = ((𝐵m 𝐼) × {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  {csn 4569  cmpt 5148   × cxp 5555  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Basecbs 16485  s cress 16486  s cpws 16722  Ringcrg 19299  CRingccrg 19300   RingHom crh 19466  SubRingcsubrg 19533  algSccascl 20086   mVar cmvr 20134   mPoly cmpl 20135   evalSub ces 20286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-gsum 16718  df-prds 16723  df-pws 16725  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-srg 19258  df-ring 19301  df-cring 19302  df-rnghom 19469  df-subrg 19535  df-lmod 19638  df-lss 19706  df-lsp 19746  df-assa 20087  df-asp 20088  df-ascl 20089  df-psr 20138  df-mvr 20139  df-mpl 20140  df-evls 20288
This theorem is referenced by:  evlsscasrng  20312  evlsca  20313  mpfconst  20316  mpfind  20322  evls1sca  20488  evl1sca  20499  pf1ind  20520
  Copyright terms: Public domain W3C validator