MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval Structured version   Visualization version   GIF version

Theorem evlsval 20293
Description: Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval.w 𝑊 = (𝐼 mPoly 𝑈)
evlsval.v 𝑉 = (𝐼 mVar 𝑈)
evlsval.u 𝑈 = (𝑆s 𝑅)
evlsval.t 𝑇 = (𝑆s (𝐵m 𝐼))
evlsval.b 𝐵 = (Base‘𝑆)
evlsval.a 𝐴 = (algSc‘𝑊)
evlsval.x 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
evlsval.y 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
Assertion
Ref Expression
evlsval ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)))
Distinct variable groups:   𝑓,𝐼,𝑔,𝑥   𝑅,𝑓,𝑥   𝑆,𝑓,𝑔,𝑥   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐴(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑓,𝑔)   𝑄(𝑥,𝑓,𝑔)   𝑅(𝑔)   𝑇(𝑥,𝑔)   𝑈(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑔)   𝑋(𝑥,𝑓,𝑔)   𝑌(𝑥,𝑓,𝑔)   𝑍(𝑥,𝑓,𝑔)

Proof of Theorem evlsval
Dummy variables 𝑏 𝑖 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 elex 3512 . . . . 5 (𝐼𝑍𝐼 ∈ V)
3 fveq2 6664 . . . . . . . . . 10 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
43adantl 484 . . . . . . . . 9 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) = (Base‘𝑆))
54csbeq1d 3886 . . . . . . . 8 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))) = (Base‘𝑆) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
6 fvex 6677 . . . . . . . . . 10 (Base‘𝑆) ∈ V
76a1i 11 . . . . . . . . 9 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑆) ∈ V)
8 simplr 767 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → 𝑠 = 𝑆)
98fveq2d 6668 . . . . . . . . . 10 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (SubRing‘𝑠) = (SubRing‘𝑆))
10 simpll 765 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → 𝑖 = 𝐼)
11 oveq1 7157 . . . . . . . . . . . . . 14 (𝑠 = 𝑆 → (𝑠s 𝑟) = (𝑆s 𝑟))
1211ad2antlr 725 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑠s 𝑟) = (𝑆s 𝑟))
1310, 12oveq12d 7168 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑖 mPoly (𝑠s 𝑟)) = (𝐼 mPoly (𝑆s 𝑟)))
1413csbeq1d 3886 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))) = (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))))
15 ovexd 7185 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝐼 mPoly (𝑆s 𝑟)) ∈ V)
16 simprr 771 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))
17 simplr 767 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → 𝑠 = 𝑆)
18 simprl 769 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → 𝑏 = (Base‘𝑆))
19 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → 𝑖 = 𝐼)
2018, 19oveq12d 7168 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑏m 𝑖) = ((Base‘𝑆) ↑m 𝐼))
2117, 20oveq12d 7168 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑠s (𝑏m 𝑖)) = (𝑆s ((Base‘𝑆) ↑m 𝐼)))
2216, 21oveq12d 7168 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑤 RingHom (𝑠s (𝑏m 𝑖))) = ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))))
2316fveq2d 6668 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (algSc‘𝑤) = (algSc‘(𝐼 mPoly (𝑆s 𝑟))))
2423coeq2d 5727 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑓 ∘ (algSc‘𝑤)) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))))
2520xpeq1d 5578 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → ((𝑏m 𝑖) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
2625mpteq2dv 5154 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})))
2724, 26eqeq12d 2837 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → ((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))))
2817oveq1d 7165 . . . . . . . . . . . . . . . . . 18 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑠s 𝑟) = (𝑆s 𝑟))
2919, 28oveq12d 7168 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑖 mVar (𝑠s 𝑟)) = (𝐼 mVar (𝑆s 𝑟)))
3029coeq2d 5727 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))))
3120mpteq1d 5147 . . . . . . . . . . . . . . . . 17 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)) = (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))
3219, 31mpteq12dv 5143 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))
3330, 32eqeq12d 2837 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → ((𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))
3427, 33anbi12d 632 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
3522, 34riotaeqbidv 7111 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ (𝑏 = (Base‘𝑆) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟)))) → (𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
3635anassrs 470 . . . . . . . . . . . 12 ((((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) ∧ 𝑤 = (𝐼 mPoly (𝑆s 𝑟))) → (𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
3715, 36csbied 3918 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝐼 mPoly (𝑆s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
3814, 37eqtrd 2856 . . . . . . . . . 10 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥))))) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
399, 38mpteq12dv 5143 . . . . . . . . 9 (((𝑖 = 𝐼𝑠 = 𝑆) ∧ 𝑏 = (Base‘𝑆)) → (𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))))
407, 39csbied 3918 . . . . . . . 8 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑆) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))))
415, 40eqtrd 2856 . . . . . . 7 ((𝑖 = 𝐼𝑠 = 𝑆) → (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))))
42 df-evls 20280 . . . . . . 7 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
43 fvex 6677 . . . . . . . 8 (SubRing‘𝑆) ∈ V
4443mptex 6980 . . . . . . 7 (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))) ∈ V
4541, 42, 44ovmpoa 7299 . . . . . 6 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → (𝐼 evalSub 𝑆) = (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))))
4645fveq1d 6666 . . . . 5 ((𝐼 ∈ V ∧ 𝑆 ∈ CRing) → ((𝐼 evalSub 𝑆)‘𝑅) = ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅))
472, 46sylan 582 . . . 4 ((𝐼𝑍𝑆 ∈ CRing) → ((𝐼 evalSub 𝑆)‘𝑅) = ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅))
481, 47syl5eq 2868 . . 3 ((𝐼𝑍𝑆 ∈ CRing) → 𝑄 = ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅))
49483adant3 1128 . 2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅))
50 oveq2 7158 . . . . . . . 8 (𝑟 = 𝑅 → (𝑆s 𝑟) = (𝑆s 𝑅))
5150oveq2d 7166 . . . . . . 7 (𝑟 = 𝑅 → (𝐼 mPoly (𝑆s 𝑟)) = (𝐼 mPoly (𝑆s 𝑅)))
5251oveq1d 7165 . . . . . 6 (𝑟 = 𝑅 → ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))) = ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))))
5351fveq2d 6668 . . . . . . . . 9 (𝑟 = 𝑅 → (algSc‘(𝐼 mPoly (𝑆s 𝑟))) = (algSc‘(𝐼 mPoly (𝑆s 𝑅))))
5453coeq2d 5727 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))))
55 mpteq1 5146 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})))
5654, 55eqeq12d 2837 . . . . . . 7 (𝑟 = 𝑅 → ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))))
5750oveq2d 7166 . . . . . . . . 9 (𝑟 = 𝑅 → (𝐼 mVar (𝑆s 𝑟)) = (𝐼 mVar (𝑆s 𝑅)))
5857coeq2d 5727 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))))
5958eqeq1d 2823 . . . . . . 7 (𝑟 = 𝑅 → ((𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))) ↔ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))
6056, 59anbi12d 632 . . . . . 6 (𝑟 = 𝑅 → (((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
6152, 60riotaeqbidv 7111 . . . . 5 (𝑟 = 𝑅 → (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
62 eqid 2821 . . . . 5 (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))) = (𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
63 riotaex 7112 . . . . 5 (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))) ∈ V
6461, 62, 63fvmpt 6762 . . . 4 (𝑅 ∈ (SubRing‘𝑆) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
65 evlsval.w . . . . . . . . 9 𝑊 = (𝐼 mPoly 𝑈)
66 evlsval.u . . . . . . . . . 10 𝑈 = (𝑆s 𝑅)
6766oveq2i 7161 . . . . . . . . 9 (𝐼 mPoly 𝑈) = (𝐼 mPoly (𝑆s 𝑅))
6865, 67eqtri 2844 . . . . . . . 8 𝑊 = (𝐼 mPoly (𝑆s 𝑅))
69 evlsval.t . . . . . . . . 9 𝑇 = (𝑆s (𝐵m 𝐼))
70 evlsval.b . . . . . . . . . . 11 𝐵 = (Base‘𝑆)
7170oveq1i 7160 . . . . . . . . . 10 (𝐵m 𝐼) = ((Base‘𝑆) ↑m 𝐼)
7271oveq2i 7161 . . . . . . . . 9 (𝑆s (𝐵m 𝐼)) = (𝑆s ((Base‘𝑆) ↑m 𝐼))
7369, 72eqtri 2844 . . . . . . . 8 𝑇 = (𝑆s ((Base‘𝑆) ↑m 𝐼))
7468, 73oveq12i 7162 . . . . . . 7 (𝑊 RingHom 𝑇) = ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))
7574a1i 11 . . . . . 6 (⊤ → (𝑊 RingHom 𝑇) = ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼))))
76 evlsval.a . . . . . . . . . . 11 𝐴 = (algSc‘𝑊)
7768fveq2i 6667 . . . . . . . . . . 11 (algSc‘𝑊) = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
7876, 77eqtri 2844 . . . . . . . . . 10 𝐴 = (algSc‘(𝐼 mPoly (𝑆s 𝑅)))
7978coeq2i 5725 . . . . . . . . 9 (𝑓𝐴) = (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅))))
80 evlsval.x . . . . . . . . . 10 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
8171xpeq1i 5575 . . . . . . . . . . 11 ((𝐵m 𝐼) × {𝑥}) = (((Base‘𝑆) ↑m 𝐼) × {𝑥})
8281mpteq2i 5150 . . . . . . . . . 10 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
8380, 82eqtri 2844 . . . . . . . . 9 𝑋 = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥}))
8479, 83eqeq12i 2836 . . . . . . . 8 ((𝑓𝐴) = 𝑋 ↔ (𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})))
85 evlsval.v . . . . . . . . . . 11 𝑉 = (𝐼 mVar 𝑈)
8666oveq2i 7161 . . . . . . . . . . 11 (𝐼 mVar 𝑈) = (𝐼 mVar (𝑆s 𝑅))
8785, 86eqtri 2844 . . . . . . . . . 10 𝑉 = (𝐼 mVar (𝑆s 𝑅))
8887coeq2i 5725 . . . . . . . . 9 (𝑓𝑉) = (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅)))
89 evlsval.y . . . . . . . . . 10 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
90 eqid 2821 . . . . . . . . . . . 12 (𝑔𝑥) = (𝑔𝑥)
9171, 90mpteq12i 5151 . . . . . . . . . . 11 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) = (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))
9291mpteq2i 5150 . . . . . . . . . 10 (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))
9389, 92eqtri 2844 . . . . . . . . 9 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))
9488, 93eqeq12i 2836 . . . . . . . 8 ((𝑓𝑉) = 𝑌 ↔ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))
9584, 94anbi12i 628 . . . . . . 7 (((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))
9695a1i 11 . . . . . 6 (⊤ → (((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌) ↔ ((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
9775, 96riotaeqbidv 7111 . . . . 5 (⊤ → (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))
9897mptru 1540 . . . 4 (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)) = (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑅)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑅)))) = (𝑥𝑅 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑅))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥)))))
9964, 98syl6eqr 2874 . . 3 (𝑅 ∈ (SubRing‘𝑆) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅) = (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)))
100993ad2ant3 1131 . 2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑟 ∈ (SubRing‘𝑆) ↦ (𝑓 ∈ ((𝐼 mPoly (𝑆s 𝑟)) RingHom (𝑆s ((Base‘𝑆) ↑m 𝐼)))((𝑓 ∘ (algSc‘(𝐼 mPoly (𝑆s 𝑟)))) = (𝑥𝑟 ↦ (((Base‘𝑆) ↑m 𝐼) × {𝑥})) ∧ (𝑓 ∘ (𝐼 mVar (𝑆s 𝑟))) = (𝑥𝐼 ↦ (𝑔 ∈ ((Base‘𝑆) ↑m 𝐼) ↦ (𝑔𝑥))))))‘𝑅) = (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)))
10149, 100eqtrd 2856 1 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓𝐴) = 𝑋 ∧ (𝑓𝑉) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  Vcvv 3494  csb 3882  {csn 4560  cmpt 5138   × cxp 5547  ccom 5553  cfv 6349  crio 7107  (class class class)co 7150  m cmap 8400  Basecbs 16477  s cress 16478  s cpws 16714  CRingccrg 19292   RingHom crh 19458  SubRingcsubrg 19525  algSccascl 20078   mVar cmvr 20126   mPoly cmpl 20127   evalSub ces 20278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-evls 20280
This theorem is referenced by:  evlsval2  20294
  Copyright terms: Public domain W3C validator