MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evth Structured version   Visualization version   GIF version

Theorem evth 22805
Description: The Extreme Value Theorem. A continuous function from a nonempty compact topological space to the reals attains its maximum at some point in the domain. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
bndth.1 𝑋 = 𝐽
bndth.2 𝐾 = (topGen‘ran (,))
bndth.3 (𝜑𝐽 ∈ Comp)
bndth.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
evth.5 (𝜑𝑋 ≠ ∅)
Assertion
Ref Expression
evth (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝐾   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem evth
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bndth.1 . . . . 5 𝑋 = 𝐽
2 bndth.2 . . . . 5 𝐾 = (topGen‘ran (,))
3 bndth.3 . . . . . 6 (𝜑𝐽 ∈ Comp)
43adantr 480 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Comp)
5 cmptop 21246 . . . . . . . . . 10 (𝐽 ∈ Comp → 𝐽 ∈ Top)
64, 5syl 17 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ Top)
71toptopon 20770 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
86, 7sylib 208 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 𝐽 ∈ (TopOn‘𝑋))
9 eqid 2651 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
109cnfldtopon 22633 . . . . . . . . . 10 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1110a1i 11 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
12 1cnd 10094 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → 1 ∈ ℂ)
138, 11, 12cnmptc 21513 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ 1) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
14 bndth.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
15 uniretop 22613 . . . . . . . . . . . . . . . . . . 19 ℝ = (topGen‘ran (,))
162unieqi 4477 . . . . . . . . . . . . . . . . . . 19 𝐾 = (topGen‘ran (,))
1715, 16eqtr4i 2676 . . . . . . . . . . . . . . . . . 18 ℝ = 𝐾
181, 17cnf 21098 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶ℝ)
1914, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑋⟶ℝ)
20 frn 6091 . . . . . . . . . . . . . . . 16 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ⊆ ℝ)
22 fdm 6089 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑋⟶ℝ → dom 𝐹 = 𝑋)
2319, 22syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝑋)
24 evth.5 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
2523, 24eqnetrd 2890 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 ≠ ∅)
26 dm0rn0 5374 . . . . . . . . . . . . . . . . 17 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
2726necon3bii 2875 . . . . . . . . . . . . . . . 16 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
2825, 27sylib 208 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐹 ≠ ∅)
291, 2, 3, 14bndth 22804 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥)
30 ffn 6083 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
3119, 30syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝑋)
32 breq1 4688 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐹𝑦) → (𝑧𝑥 ↔ (𝐹𝑦) ≤ 𝑥))
3332ralrn 6402 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3534rexbidv 3081 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝐹𝑦) ≤ 𝑥))
3629, 35mpbird 247 . . . . . . . . . . . . . . 15 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥)
3721, 28, 363jca 1261 . . . . . . . . . . . . . 14 (𝜑 → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
38 suprcl 11021 . . . . . . . . . . . . . 14 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
4039recnd 10106 . . . . . . . . . . . 12 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
4140adantr 480 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
428, 11, 41cnmptc 21513 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ sup(ran 𝐹, ℝ, < )) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
4319feqmptd 6288 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑧𝑋 ↦ (𝐹𝑧)))
449cnfldtop 22634 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ Top
45 cnrest2r 21139 . . . . . . . . . . . . . 14 ((TopOpen‘ℂfld) ∈ Top → (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld)))
4644, 45ax-mp 5 . . . . . . . . . . . . 13 (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)) ⊆ (𝐽 Cn (TopOpen‘ℂfld))
479tgioo2 22653 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
482, 47eqtri 2673 . . . . . . . . . . . . . . 15 𝐾 = ((TopOpen‘ℂfld) ↾t ℝ)
4948oveq2i 6701 . . . . . . . . . . . . . 14 (𝐽 Cn 𝐾) = (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))
5014, 49syl6eleq 2740 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
5146, 50sseldi 3634 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5243, 51eqeltrrd 2731 . . . . . . . . . . 11 (𝜑 → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5352adantr 480 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (𝐹𝑧)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
549subcn 22716 . . . . . . . . . . 11 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5554a1i 11 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
568, 42, 53, 55cnmpt12f 21517 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5739ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
58 ffvelrn 6397 . . . . . . . . . . . . . . . . . 18 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
5958adantll 750 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
60 eldifsn 4350 . . . . . . . . . . . . . . . . 17 ((𝐹𝑧) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
6159, 60sylib 208 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < )))
6261simpld 474 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
6357, 62resubcld 10496 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℝ)
6463recnd 10106 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ)
6557recnd 10106 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ∈ ℂ)
6662recnd 10106 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
6761simprd 478 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (𝐹𝑧) ≠ sup(ran 𝐹, ℝ, < ))
6867necomd 2878 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑧))
6965, 66, 68subne0d 10439 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0)
70 eldifsn 4350 . . . . . . . . . . . . 13 ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}) ↔ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ ℂ ∧ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ≠ 0))
7164, 69, 70sylanbrc 699 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) ∈ (ℂ ∖ {0}))
72 eqid 2651 . . . . . . . . . . . 12 (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) = (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))
7371, 72fmptd 6425 . . . . . . . . . . 11 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))):𝑋⟶(ℂ ∖ {0}))
74 frn 6091 . . . . . . . . . . 11 ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))):𝑋⟶(ℂ ∖ {0}) → ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}))
7573, 74syl 17 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}))
76 difssd 3771 . . . . . . . . . 10 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (ℂ ∖ {0}) ⊆ ℂ)
77 cnrest2 21138 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ⊆ (ℂ ∖ {0}) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7811, 75, 76, 77syl3anc 1366 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))))
7956, 78mpbid 222 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))))
80 eqid 2651 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))
819, 80divcn 22718 . . . . . . . . 9 / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))
8281a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)))
838, 13, 79, 82cnmpt12f 21517 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
8463, 69rereccld 10890 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑧𝑋) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) ∈ ℝ)
85 eqid 2651 . . . . . . . . . 10 (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) = (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))
8684, 85fmptd 6425 . . . . . . . . 9 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))):𝑋⟶ℝ)
87 frn 6091 . . . . . . . . 9 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))):𝑋⟶ℝ → ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ)
8886, 87syl 17 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ)
89 ax-resscn 10031 . . . . . . . . 9 ℝ ⊆ ℂ
9089a1i 11 . . . . . . . 8 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ℝ ⊆ ℂ)
91 cnrest2 21138 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ⊆ ℝ ∧ ℝ ⊆ ℂ) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
9211, 88, 90, 91syl3anc 1366 . . . . . . 7 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ↔ (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ))))
9383, 92mpbid 222 . . . . . 6 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn ((TopOpen‘ℂfld) ↾t ℝ)))
9493, 49syl6eleqr 2741 . . . . 5 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → (𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)))) ∈ (𝐽 Cn 𝐾))
951, 2, 4, 94bndth 22804 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
9639ad2antrr 762 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
97 simpr 476 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
98 1re 10077 . . . . . . . . . . 11 1 ∈ ℝ
99 ifcl 4163 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
10097, 98, 99sylancl 695 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
101 0red 10079 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
10298a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
103 0lt1 10588 . . . . . . . . . . . . 13 0 < 1
104103a1i 11 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < 1)
105 max1 12054 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
10698, 97, 105sylancr 696 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑥, 𝑥, 1))
107101, 102, 100, 104, 106ltletrd 10235 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
108107gt0ne0d 10630 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
109100, 108rereccld 10890 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
110100, 107recgt0d 10996 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
111109, 110elrpd 11907 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ+)
11296, 111ltsubrpd 11942 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ))
11396, 109resubcld 10496 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ)
114113, 96ltnled 10222 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ((sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) < sup(ran 𝐹, ℝ, < ) ↔ ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
115112, 114mpbid 222 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))))
116 simprl 809 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ∈ ℝ)
117 max2 12056 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11898, 116, 117sylancr 696 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1))
11939ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
120 ffvelrn 6397 . . . . . . . . . . . . . . . . 17 ((𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ∧ 𝑦𝑋) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
121120ad2ant2l 797 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
122 eldifsn 4350 . . . . . . . . . . . . . . . 16 ((𝐹𝑦) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
123121, 122sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ∈ ℝ ∧ (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < )))
124123simpld 474 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ∈ ℝ)
125119, 124resubcld 10496 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ)
12637adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
127 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝑋𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
12831, 127sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑋) → (𝐹𝑦) ∈ ran 𝐹)
129 suprub 11022 . . . . . . . . . . . . . . . . . 18 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (𝐹𝑦) ∈ ran 𝐹) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
130126, 128, 129syl2anc 694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝑋) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
131130ad2ant2rl 800 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
132123simprd 478 . . . . . . . . . . . . . . . . 17 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) ≠ sup(ran 𝐹, ℝ, < ))
133132necomd 2878 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑦))
134124, 119ltlend 10220 . . . . . . . . . . . . . . . 16 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) < sup(ran 𝐹, ℝ, < ) ↔ ((𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ) ∧ sup(ran 𝐹, ℝ, < ) ≠ (𝐹𝑦))))
135131, 133, 134mpbir2and 977 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (𝐹𝑦) < sup(ran 𝐹, ℝ, < ))
136124, 119posdifd 10652 . . . . . . . . . . . . . . 15 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) < sup(ran 𝐹, ℝ, < ) ↔ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
137135, 136mpbid 222 . . . . . . . . . . . . . 14 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
138137gt0ne0d 10630 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ≠ 0)
139125, 138rereccld 10890 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ)
140116, 98, 99sylancl 695 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ)
141 letr 10169 . . . . . . . . . . . 12 (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ if(1 ≤ 𝑥, 𝑥, 1) ∈ ℝ) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
142139, 116, 140, 141syl3anc 1366 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥𝑥 ≤ if(1 ≤ 𝑥, 𝑥, 1)) → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
143118, 142mpan2d 710 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
144 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
145144oveq2d 6706 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧)) = (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))
146145oveq2d 6706 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
147 ovex 6718 . . . . . . . . . . . . 13 (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ∈ V
148146, 85, 147fvmpt 6321 . . . . . . . . . . . 12 (𝑦𝑋 → ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) = (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))))
149148breq1d 4695 . . . . . . . . . . 11 (𝑦𝑋 → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
150149ad2antll 765 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ 𝑥))
151109adantrr 753 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ)
152107adantrr 753 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < if(1 ≤ 𝑥, 𝑥, 1))
153140, 152recgt0d 10996 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1)))
154 lerec 10944 . . . . . . . . . . . 12 ((((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ 0 < (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∧ ((sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ∈ ℝ ∧ 0 < (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)))) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
155151, 153, 125, 137, 154syl22anc 1367 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
156 lesub 10545 . . . . . . . . . . . 12 (((1 / if(1 ≤ 𝑥, 𝑥, 1)) ∈ ℝ ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
157151, 119, 124, 156syl3anc 1366 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / if(1 ≤ 𝑥, 𝑥, 1)) ≤ (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦)) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
158140recnd 10106 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ∈ ℂ)
159108adantrr 753 . . . . . . . . . . . . 13 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → if(1 ≤ 𝑥, 𝑥, 1) ≠ 0)
160158, 159recrecd 10836 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) = if(1 ≤ 𝑥, 𝑥, 1))
161160breq2d 4697 . . . . . . . . . . 11 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ (1 / (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
162155, 157, 1613bitr3d 298 . . . . . . . . . 10 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → ((𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑦))) ≤ if(1 ≤ 𝑥, 𝑥, 1)))
163143, 150, 1623imtr4d 283 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ (𝑥 ∈ ℝ ∧ 𝑦𝑋)) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
164163anassrs 681 . . . . . . . 8 ((((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝑋) → (((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
165164ralimdva 2991 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
16637ad2antrr 762 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥))
167 suprleub 11027 . . . . . . . . 9 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑥) ∧ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
168166, 113, 167syl2anc 694 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
16931ad2antrr 762 . . . . . . . . 9 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn 𝑋)
170 breq1 4688 . . . . . . . . . 10 (𝑧 = (𝐹𝑦) → (𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
171170ralrn 6402 . . . . . . . . 9 (𝐹 Fn 𝑋 → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
172169, 171syl 17 . . . . . . . 8 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑧 ∈ ran 𝐹 𝑧 ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
173168, 172bitrd 268 . . . . . . 7 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1))) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
174165, 173sylibrd 249 . . . . . 6 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥 → sup(ran 𝐹, ℝ, < ) ≤ (sup(ran 𝐹, ℝ, < ) − (1 / if(1 ≤ 𝑥, 𝑥, 1)))))
175115, 174mtod 189 . . . . 5 (((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) ∧ 𝑥 ∈ ℝ) → ¬ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
176175nrexdv 3030 . . . 4 ((𝜑𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})) → ¬ ∃𝑥 ∈ ℝ ∀𝑦𝑋 ((𝑧𝑋 ↦ (1 / (sup(ran 𝐹, ℝ, < ) − (𝐹𝑧))))‘𝑦) ≤ 𝑥)
17795, 176pm2.65da 599 . . 3 (𝜑 → ¬ 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}))
178130ralrimiva 2995 . . . . . . . . 9 (𝜑 → ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < ))
179 breq2 4689 . . . . . . . . . 10 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ((𝐹𝑦) ≤ (𝐹𝑥) ↔ (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
180179ralbidv 3015 . . . . . . . . 9 ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → (∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ∀𝑦𝑋 (𝐹𝑦) ≤ sup(ran 𝐹, ℝ, < )))
181178, 180syl5ibrcom 237 . . . . . . . 8 (𝜑 → ((𝐹𝑥) = sup(ran 𝐹, ℝ, < ) → ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥)))
182181necon3bd 2837 . . . . . . 7 (𝜑 → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
183182adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
18419ffvelrnda 6399 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
185 eldifsn 4350 . . . . . . . 8 ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
186185baib 964 . . . . . . 7 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
187184, 186syl 17 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹𝑥) ≠ sup(ran 𝐹, ℝ, < )))
188183, 187sylibrd 249 . . . . 5 ((𝜑𝑥𝑋) → (¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
189188ralimdva 2991 . . . 4 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
190 ffnfv 6428 . . . . . 6 (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ (𝐹 Fn 𝑋 ∧ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
191190baib 964 . . . . 5 (𝐹 Fn 𝑋 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
19231, 191syl 17 . . . 4 (𝜑 → (𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )}) ↔ ∀𝑥𝑋 (𝐹𝑥) ∈ (ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
193189, 192sylibrd 249 . . 3 (𝜑 → (∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) → 𝐹:𝑋⟶(ℝ ∖ {sup(ran 𝐹, ℝ, < )})))
194177, 193mtod 189 . 2 (𝜑 → ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
195 dfrex2 3025 . 2 (∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥) ↔ ¬ ∀𝑥𝑋 ¬ ∀𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
196194, 195sylibr 224 1 (𝜑 → ∃𝑥𝑋𝑦𝑋 (𝐹𝑦) ≤ (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cdif 3604  wss 3607  c0 3948  ifcif 4119  {csn 4210   cuni 4468   class class class wbr 4685  cmpt 4762  dom cdm 5143  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  supcsup 8387  cc 9972  cr 9973  0cc0 9974  1c1 9975   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  (,)cioo 12213  t crest 16128  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  Topctop 20746  TopOnctopon 20763   Cn ccn 21076  Compccmp 21237   ×t ctx 21411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174
This theorem is referenced by:  evth2  22806  evthicc  23274  evthf  39500  cncmpmax  39505
  Copyright terms: Public domain W3C validator