MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-2nd Structured version   Visualization version   GIF version

Theorem ex-2nd 26457
Description: Example for df-2nd 7034. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-2nd (2nd ‘⟨3, 4⟩) = 4

Proof of Theorem ex-2nd
StepHypRef Expression
1 3re 10938 . . 3 3 ∈ ℝ
21elexi 3182 . 2 3 ∈ V
3 4re 10941 . . 3 4 ∈ ℝ
43elexi 3182 . 2 4 ∈ V
52, 4op2nd 7042 1 (2nd ‘⟨3, 4⟩) = 4
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cop 4127  cfv 5787  2nd c2nd 7032  cr 9788  3c3 10915  4c4 10916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-i2m1 9857  ax-1ne0 9858  ax-rrecex 9861  ax-cnre 9862
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-iota 5751  df-fun 5789  df-fv 5795  df-ov 6527  df-2nd 7034  df-2 10923  df-3 10924  df-4 10925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator