MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-id Structured version   Visualization version   GIF version

Theorem ex-id 27152
Description: Example for df-id 4991. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
Assertion
Ref Expression
ex-id (5 I 5 ∧ ¬ 4 I 5)

Proof of Theorem ex-id
StepHypRef Expression
1 eqid 2621 . . 3 5 = 5
2 5re 11046 . . . . 5 5 ∈ ℝ
32elexi 3199 . . . 4 5 ∈ V
43ideq 5236 . . 3 (5 I 5 ↔ 5 = 5)
51, 4mpbir 221 . 2 5 I 5
6 4re 11044 . . . 4 4 ∈ ℝ
7 4lt5 11147 . . . 4 4 < 5
86, 7ltneii 10097 . . 3 4 ≠ 5
93ideq 5236 . . 3 (4 I 5 ↔ 4 = 5)
108, 9nemtbir 2885 . 2 ¬ 4 I 5
115, 10pm3.2i 471 1 (5 I 5 ∧ ¬ 4 I 5)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480   class class class wbr 4615   I cid 4986  cr 9882  4c4 11019  5c5 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-po 4997  df-so 4998  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-2 11026  df-3 11027  df-4 11028  df-5 11029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator