MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-res Structured version   Visualization version   GIF version

Theorem ex-res 28214
Description: Example for df-res 5561. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
Assertion
Ref Expression
ex-res ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})

Proof of Theorem ex-res
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩})
2 df-pr 4563 . . . . 5 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
31, 2syl6eq 2872 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐹 = ({⟨2, 6⟩} ∪ {⟨3, 9⟩}))
43reseq1d 5846 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵))
5 resundir 5862 . . 3 (({⟨2, 6⟩} ∪ {⟨3, 9⟩}) ↾ 𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵))
64, 5syl6eq 2872 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)))
7 2re 11705 . . . . . . 7 2 ∈ ℝ
87elexi 3513 . . . . . 6 2 ∈ V
9 6re 11721 . . . . . . 7 6 ∈ ℝ
109elexi 3513 . . . . . 6 6 ∈ V
118, 10relsnop 5672 . . . . 5 Rel {⟨2, 6⟩}
12 dmsnopss 6065 . . . . . 6 dom {⟨2, 6⟩} ⊆ {2}
13 snsspr2 4741 . . . . . . 7 {2} ⊆ {1, 2}
14 simpr 487 . . . . . . 7 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2})
1513, 14sseqtrrid 4019 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵)
1612, 15sstrid 3977 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → dom {⟨2, 6⟩} ⊆ 𝐵)
17 relssres 5887 . . . . 5 ((Rel {⟨2, 6⟩} ∧ dom {⟨2, 6⟩} ⊆ 𝐵) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
1811, 16, 17sylancr 589 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨2, 6⟩} ↾ 𝐵) = {⟨2, 6⟩})
19 1re 10635 . . . . . . . 8 1 ∈ ℝ
20 1lt3 11804 . . . . . . . 8 1 < 3
2119, 20gtneii 10746 . . . . . . 7 3 ≠ 1
22 2lt3 11803 . . . . . . . 8 2 < 3
237, 22gtneii 10746 . . . . . . 7 3 ≠ 2
2421, 23nelpri 4587 . . . . . 6 ¬ 3 ∈ {1, 2}
2514eleq2d 2898 . . . . . 6 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2}))
2624, 25mtbiri 329 . . . . 5 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵)
27 ressnop0 6909 . . . . 5 (¬ 3 ∈ 𝐵 → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2826, 27syl 17 . . . 4 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → ({⟨3, 9⟩} ↾ 𝐵) = ∅)
2918, 28uneq12d 4139 . . 3 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = ({⟨2, 6⟩} ∪ ∅))
30 un0 4343 . . 3 ({⟨2, 6⟩} ∪ ∅) = {⟨2, 6⟩}
3129, 30syl6eq 2872 . 2 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (({⟨2, 6⟩} ↾ 𝐵) ∪ ({⟨3, 9⟩} ↾ 𝐵)) = {⟨2, 6⟩})
326, 31eqtrd 2856 1 ((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  cun 3933  wss 3935  c0 4290  {csn 4560  {cpr 4562  cop 4566  dom cdm 5549  cres 5551  Rel wrel 5554  cr 10530  1c1 10532  2c2 11686  3c3 11687  6c6 11690  9c9 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698
This theorem is referenced by:  ex-ima  28215
  Copyright terms: Public domain W3C validator