![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-xp | Structured version Visualization version GIF version |
Description: Example for df-xp 5272. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-xp | ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4324 | . . 3 ⊢ {1, 5} = ({1} ∪ {5}) | |
2 | df-pr 4324 | . . 3 ⊢ {2, 7} = ({2} ∪ {7}) | |
3 | 1, 2 | xpeq12i 5294 | . 2 ⊢ ({1, 5} × {2, 7}) = (({1} ∪ {5}) × ({2} ∪ {7})) |
4 | xpun 5333 | . 2 ⊢ (({1} ∪ {5}) × ({2} ∪ {7})) = ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) | |
5 | 1ex 10247 | . . . . . 6 ⊢ 1 ∈ V | |
6 | 2nn 11397 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
7 | 6 | elexi 3353 | . . . . . 6 ⊢ 2 ∈ V |
8 | 5, 7 | xpsn 6571 | . . . . 5 ⊢ ({1} × {2}) = {〈1, 2〉} |
9 | 7nn 11402 | . . . . . . 7 ⊢ 7 ∈ ℕ | |
10 | 9 | elexi 3353 | . . . . . 6 ⊢ 7 ∈ V |
11 | 5, 10 | xpsn 6571 | . . . . 5 ⊢ ({1} × {7}) = {〈1, 7〉} |
12 | 8, 11 | uneq12i 3908 | . . . 4 ⊢ (({1} × {2}) ∪ ({1} × {7})) = ({〈1, 2〉} ∪ {〈1, 7〉}) |
13 | df-pr 4324 | . . . 4 ⊢ {〈1, 2〉, 〈1, 7〉} = ({〈1, 2〉} ∪ {〈1, 7〉}) | |
14 | 12, 13 | eqtr4i 2785 | . . 3 ⊢ (({1} × {2}) ∪ ({1} × {7})) = {〈1, 2〉, 〈1, 7〉} |
15 | 5nn 11400 | . . . . . . 7 ⊢ 5 ∈ ℕ | |
16 | 15 | elexi 3353 | . . . . . 6 ⊢ 5 ∈ V |
17 | 16, 7 | xpsn 6571 | . . . . 5 ⊢ ({5} × {2}) = {〈5, 2〉} |
18 | 16, 10 | xpsn 6571 | . . . . 5 ⊢ ({5} × {7}) = {〈5, 7〉} |
19 | 17, 18 | uneq12i 3908 | . . . 4 ⊢ (({5} × {2}) ∪ ({5} × {7})) = ({〈5, 2〉} ∪ {〈5, 7〉}) |
20 | df-pr 4324 | . . . 4 ⊢ {〈5, 2〉, 〈5, 7〉} = ({〈5, 2〉} ∪ {〈5, 7〉}) | |
21 | 19, 20 | eqtr4i 2785 | . . 3 ⊢ (({5} × {2}) ∪ ({5} × {7})) = {〈5, 2〉, 〈5, 7〉} |
22 | 14, 21 | uneq12i 3908 | . 2 ⊢ ((({1} × {2}) ∪ ({1} × {7})) ∪ (({5} × {2}) ∪ ({5} × {7}))) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
23 | 3, 4, 22 | 3eqtri 2786 | 1 ⊢ ({1, 5} × {2, 7}) = ({〈1, 2〉, 〈1, 7〉} ∪ {〈5, 2〉, 〈5, 7〉}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∪ cun 3713 {csn 4321 {cpr 4323 〈cop 4327 × cxp 5264 1c1 10149 ℕcn 11232 2c2 11282 5c5 11285 7c7 11287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-1cn 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |