MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exbi Structured version   Visualization version   GIF version

Theorem exbi 1770
Description: Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Assertion
Ref Expression
exbi (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))

Proof of Theorem exbi
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21alexbii 1757 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478  wex 1701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-ex 1702
This theorem is referenced by:  exbii  1771  nfbiit  1774  19.19  2095  bj-2exbi  32262  bj-3exbi  32263  2exbi  38082  rexbidar  38153  onfrALTlem5VD  38625  onfrALTlem1VD  38630  csbxpgVD  38634  csbrngVD  38636  csbunigVD  38638  e2ebindVD  38652  e2ebindALT  38669
  Copyright terms: Public domain W3C validator